Skip to main content
Log in

Effects of Temperature and Straining on the Oxidation Behavior of Electrical Steels

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The effect of Si content (in the range of 0.01–1.91 wt%) on scale formation of electrical steels in dry air at temperatures ranging from 850 to 1200 °C was investigated. The effect of applied tensile strain on oxidation behavior was also explored. A thermo-mechanical simulator (Gleeble machine) was employed to conduct the oxidation tests at different load conditions. The experimental results showed that at 1000 °C the oxidation rate decreased with increasing Si content in the steel. The formation of an inner scale, mainly consisting of amorphous silica, was responsible for the improved oxidation resistance. However, a substantial increase in oxidation rate due to the formation of molten eutectic fayalite (Fe2SiO4) was observed when the temperature was raised to 1200 °C. Under straining conditions at a very short oxidation time, the inner scale structure was slightly modified though the scale thickness remained almost unchanged for the steel containing 1.91 wt% Si.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Fukagawa, H. Okada, and Y. Maehara, Iron and Steel Institute of Japan International 34, 906 (1994).

    CAS  Google Scholar 

  2. H. Okada, T. Fukagawa, H. Ishihara, A. Okamoto, M. Azuma, and Y. Matsuda, Tetsu-to-Hagane 80, 849 (1994).

    CAS  Google Scholar 

  3. I. Svedung and N. G. Vannerberg, Corroion Science 14, 391 (1974).

    Article  CAS  Google Scholar 

  4. C. W. Tuck, in Proceedings of the First International Congress of Metallic Corrosion, London, 1961, p. 221.

  5. T. Adachi and G. H. Meier, Oxidation of Metals 27, 347 (1987).

    Article  CAS  Google Scholar 

  6. Y. L. Yang, C. H. Yang, S. L. Lin, C. H. Chen, and W. T. Tsai, Materials Chemistry and Physics 112, 566 (2008).

    Article  CAS  Google Scholar 

  7. K. Kusabiraki, R. Watanabe, T. Ikehata, M. Takeda, T. Onishi, and X. Guo, Iron and Steel Institute of Japan International 47, 1329 (2007).

    CAS  Google Scholar 

  8. L. Suarez, J. Schneider, and Y. Houbaert, Defect and Diffusion Forum 273–276, 655 (2008).

    Article  Google Scholar 

  9. L. Suarez, J. Schneider, and Y. Houbaert, Defect and Diffusion Forum 273–276, 661 (2008).

    Article  Google Scholar 

  10. M. Diéz-Ercilla, T. Ros-Yáñez, R. Petrov, Y. Houbaert, and R. Colás, Corrosion Engineering, Science and Technology 39, 295 (2004).

    Article  Google Scholar 

  11. J. Païdassi, Acta Metallurgica 6, 184 (1958).

    Article  Google Scholar 

  12. R. D. Shaw and R. Rolls, Corrosion Science 14, 443 (1974).

    Article  CAS  Google Scholar 

  13. R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals 57, 53 (2002).

    Article  CAS  Google Scholar 

  14. C. W. Tuck, Corrosion Science 5, 631 (1965).

    Article  CAS  Google Scholar 

  15. A. Atkinson and J. W. Gardner, Corrosion Science 21, 49 (1981).

    Article  CAS  Google Scholar 

  16. P. Wu, G. Eriksson, A. D. Pelton, and M. Blander, Iron and Steel Institute of Japan International 33, 26 (1993).

    CAS  Google Scholar 

  17. S. Taniguchi, K. Yamamoto, D. Megumi, and T. Shibata, Materials Science and Engineering A 308, 250 (2001).

    Article  Google Scholar 

  18. M. Okita, A. Nagai, I. Sinagawa, and K. Horinouchi, in Current Advances in Materials and Processes: Report of the ISIJ Meeting, Vol. 2 (1989), p. 1509.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Ta Tsai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, CH., Lin, SN., Chen, CH. et al. Effects of Temperature and Straining on the Oxidation Behavior of Electrical Steels. Oxid Met 72, 145–157 (2009). https://doi.org/10.1007/s11085-009-9152-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-009-9152-3

Keywords

Navigation