Skip to main content
Log in

Effect of Alloy Composition and Exposure Conditions on the Selective Oxidation Behavior of Ferritic Fe–Cr and Fe–Cr–X Alloys

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Selective oxidation behavior of ferritic martensitic Fe–Cr base alloys, exposed in various atmospheres containing combinations of O2, CO2, and H2O, were studied at various temperatures relevant to oxy-fuel combustion. This paper begins with a discussion of the required Cr content to form a continuous external chromia scale on a simple binary Fe–Cr alloy exposed in oxygen or air based on experiments and calculations using the classic Wagner model. Then, the effects of the exposure environment and Cr content on the selective oxidation of Fe–Cr alloys are evaluated. Finally, the effects produced by alloying additions of Si, commonly present in various groups of commercially available ferritic steels, are described. The discussion compares the oxide scale formation on simple binary and ternary Fe–Cr base model alloys with that on several commercially available ferritic steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. E. Essuman, G. H. Meier, J. Żurek, M. Hänsel, L. Singheiser, and W. J. Quadakkers, Scripta Materialia 57, 845 (2007).

    Article  CAS  Google Scholar 

  2. J. Pirón Abellán, T. Olszewski, H. J. Penkalla, G. H. Meier, L. Singheiser, and W. J. Quadakkers, Materials at High Temperatures 26, 63 (2009).

    Article  Google Scholar 

  3. W. J. Quadakkers, A. Elschner, W. Speier, and H. Nickel, Applied Surface Science 52, 171 (1991).

    Article  Google Scholar 

  4. C. Wagner, Journal of the Electrochemical Society 99, 369 (1956).

    Article  Google Scholar 

  5. R. A. Rapp, Acta Metallurgica 9, 730 (1961).

    Article  CAS  Google Scholar 

  6. F. Gesmundo and F. Viani, Oxidation of Metals 25, 269 (1986).

    Article  CAS  Google Scholar 

  7. C. Wagner, Zeitschrift für Elektrochemie 63, 772 (1959).

    CAS  Google Scholar 

  8. J. H. Swisher and E. T. Turkdogan, Transactions of the Metallurgical Society AIME 239, 426 (1967).

    CAS  Google Scholar 

  9. E. Fromm and E. Gebhardt, Gase und Kohlenstoff in Metallen (Springer Verlag, Berlin, 1976).

    Google Scholar 

  10. D. P. Whittle, G. C. Wood, D. J. Evans, and D. B. Scully, Acta Metallurgica 15, 1747 (1967).

    Article  CAS  Google Scholar 

  11. C. S. Giggins and F. S. Pettit, Oxidation of Metals 14, 363 (1980).

    Article  CAS  Google Scholar 

  12. C. T. Fujii and R. A. Meussner, Journal of the Electrochemical Society 114, 435 (1967).

    Article  CAS  Google Scholar 

  13. J. Pirón Abellán, T. Olszewski, G. H. Meier, L. Singheiser, and W. J. Quadakkers, International Journal of Materials Research 101, 287 (2010).

    Google Scholar 

  14. A. Rahmel and J. Tobolski, Corrosion Science 5, 333 (1965).

    Article  CAS  Google Scholar 

  15. C. T. Fujii and R. A. Meussner, Journal of the Electrochemical Society 111, 1215 (1964).

    Article  CAS  Google Scholar 

  16. L. Tomlinson and N. J. Cory, Corrosion Science 29, 939 (1989).

    Article  CAS  Google Scholar 

  17. M. H. B. Ani, T. Kodama, M. Ueda, K. Kawamura, and T. Maruyama, Materials Transactions 50, 256 (2009).

    Article  Google Scholar 

  18. M. Michalik, M. Hänsel, J. Żurek, L. Singheiser, and W. J. Quadakkers, Materials at High Temperatures 22, 213 (2005).

    Article  CAS  Google Scholar 

  19. S. Henry, J. Mougin, Y. Wouters, J.-P. Petit, and A. Galerie, Materials at High Temperatures 17, 231 (2000).

    Article  CAS  Google Scholar 

  20. N. K. Othman, J. Zhang, and D. J. Young, Oxidation of Metals 73, 337 (2010).

    Article  CAS  Google Scholar 

  21. J. Żurek, L. Niewolak, and W. J. Quadakkers, Unpublished Results, Forschungszentrum Jülich, FRG (2010).

  22. G. R. Holcomb, Oxidation of Metals 69, 163 (2008).

    Article  CAS  Google Scholar 

  23. I. G. Wright and R. B. Dooley, International Materials Reviews 55, 129 (2010).

    Article  CAS  Google Scholar 

  24. W.J. Quadakkers, Unpublished Results, Forschungszentrum Jülich, FRG (2010).

  25. A. M. Huntz, V. Bague, G. Beauple, C. Haut, C. Severac, P. Lecour, X. Longaygue, and F. Ropital, Applied Surface Science 207, 255 (2003).

    Article  CAS  ADS  Google Scholar 

  26. B. Li and B. Gleeson, Oxidation of Metals 65, 101 (2006).

    Article  CAS  Google Scholar 

  27. A. Kumar and D. L. Douglass, Oxidation of Metals 10, 1 (1976).

    Article  CAS  Google Scholar 

  28. S. N. Basu and G. J. Yurek, Oxidation of Metals 36, 281 (1991).

    Article  CAS  Google Scholar 

  29. J. F. Radavich, Corrosion 15, 613t (1959).

    CAS  Google Scholar 

  30. F. H. Stott, G. J. Gabriel, F. I. Wei, and G. C. Wood, Materials and Corrosion 38, 521 (1987).

    Article  CAS  Google Scholar 

  31. V. Lepingle, G. Louis, D. Allué, B. Lefebvre, and B. Vandenberghe, Corrosion Science 50, 1011 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work at UPitt was performed in support of the National Energy Technology Laboratory under RDS contract DE-AC26-04NT41817. The work at FZJ was supported by the German Ministry for Economics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keeyoung Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meier, G.H., Jung, K., Mu, N. et al. Effect of Alloy Composition and Exposure Conditions on the Selective Oxidation Behavior of Ferritic Fe–Cr and Fe–Cr–X Alloys. Oxid Met 74, 319–340 (2010). https://doi.org/10.1007/s11085-010-9215-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-010-9215-5

Keywords

Navigation