Skip to main content
Log in

Active Oxidation of SiC

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Silicon carbide (SiC) forms a protective condensed-phase oxide (SiO2) in passive oxidation and a volatile sub-oxide (SiO(g)) in active oxidation. The transition between these two modes of oxidation and the rates of active oxidation are critical issues. A literature review indicates that impurity effects, the difference between active-to-passive and passive-to-active transitions, and the effect of total pressure on these transitions remain unexplored for SiC. Measurements were made in a thermogravimetric apparatus (TGA) by changing oxygen potentials either by blending O2/Ar mixtures or changing total pressures in a pure oxygen gas stream to the point where a transition occurs. Specimens were examined with standard optical and electron-optical techniques. Active-to-passive and passive-to-active transitions were measured and found to be similar for SiC, which is in contrast to pure Si. The similarity in SiC is attributed to SiC/SiO2 interfacial reactions producing the necessary conditions for passive scale formation (active-to-passive) or passive scale breakdown (passive-to-active). Comparable results were obtained in both the O2/Ar and reduced total O2 pressure cases for SiC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. V. Presser and K. G. Nickel, Critical Reviews in Solid State and Materials Sciences 33, 1 (2008).

    Article  CAS  Google Scholar 

  2. F. Aldinger, M. Auweter-Kurtz, M. Fertig, G. Herdrich, K. Hirsch, P. Linder, D. Matusch, G. Neuer, U. Schumacher, and M. Winter, Basic Research and Technologies for Two-Stage-to-Orbit Vehicles, (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2005).

    Google Scholar 

  3. F. Infed, S. Weiland, H. Lange, A. Steinacher, and K. Handrick, Presented at 6 th European Workshop on Thermal Protection and Hot Structures, Stuttgart, April, 2009.

  4. C. Wagner, Journal of Applied Physics 29, 1295 (1958).

    Article  CAS  Google Scholar 

  5. E. T. Turkdogan, P. Grieveson, and L. S. Darken, Journal of Physical Chemistry 67, 1647 (1963).

    Article  CAS  Google Scholar 

  6. E. A. Gulbransen, K. F. Andrew, and F. A. Brassart, Journal of the Electrochemical Society 113, 1311 (1966).

    Article  CAS  Google Scholar 

  7. D. E. Rosner and H. D. Allendorf, Journal of Physical Chemistry 74, 1829 (1970).

    Article  CAS  Google Scholar 

  8. J. E. Antill and J. B. Warburton, Corrosion Science 11, 337 (1971).

    Article  CAS  Google Scholar 

  9. E. A. Gulbransen and S. A. Jansson, Oxidation of Metals 4, 181 (1972).

    Article  CAS  Google Scholar 

  10. S. C. Singhal, Ceramurgia International 2, 123 (1976).

    Article  CAS  Google Scholar 

  11. J. W. Hinze and H. C. Graham, Journal of the Electrochemical Society 123, 1066 (1976).

    Article  CAS  Google Scholar 

  12. L. H. Keys, in Properties of High Temperature Alloys with Emphasis on Environmental Effects, eds. Z. A. Foroulis and F. S. Pettit (The Electrochemical Society, Princeton, NJ, 1977), pp. 681–696.

    Google Scholar 

  13. G. H. Schiroky, R. J. Price, and J. E. Sheehan, GA Technologies Report GA-A18696, 1986.

  14. A. H. Heuer and V. L. K. Lou, Journal of the American Ceramic Society 73, 2789 (1990).

    Article  Google Scholar 

  15. W. L. Vaughn and H. G. Maahs, Journal of the American Ceramic Society 74, 1540 (1990).

    Article  Google Scholar 

  16. T. Narushima, T. Goto, Y. Iguchi, and T. Hirai, Journal of the American Ceramic Society 74, 2583 (1991).

    Article  CAS  Google Scholar 

  17. K. G. Nickel, Journal of the European Ceramic Society 9, 3 (1992).

    Article  CAS  Google Scholar 

  18. M. Balat, G. Flamant, G. Male, and G. Pichelin, Journal of Materials Science 27, 697 (1992).

    Article  CAS  Google Scholar 

  19. M. Balat, Journal of the European Ceramic Society 16, 55 (1996).

    Article  CAS  Google Scholar 

  20. B. Schneider, A. Guette, R. Naslain, M. Cataldi, and A. Costecalde, Journal of Materials Science 33, 535 (1998).

    Article  CAS  Google Scholar 

  21. Y. Ogura and T. Morimoto, Journal of the Electrochemical Society 149, J47 (2002).

    Article  CAS  Google Scholar 

  22. Y. Song and F. W. Smith, Journal of the American Ceramic Society 88, 1864 (2005).

    Article  CAS  Google Scholar 

  23. J. Wang, L. Zhang, Q. Zeng, G. Vignoles, and A. Guette, Journal of the American Ceramic Society 91, 1665 (2008).

    Article  CAS  Google Scholar 

  24. J. Eck, M. Balat-Pichelin, L. Charpentier, E. Bêche, and F. Audubert, Journal of the European Ceramic Society 28, 2995 (2008).

    Article  CAS  Google Scholar 

  25. M. Nagamori, I. Malinsky, and A. Claveau, Metallurgical Tranactions B17, 503 (1986).

    Article  Google Scholar 

  26. T. Rosenqvist, and J. Kr. Tuset, Metallurgical Transactions B18, 471 (1987).

    Google Scholar 

  27. C. Chatillon, P. Rocabois, and C. Bernard, High Temperatures-High Pressures 31, 413 (1999).

    Article  CAS  Google Scholar 

  28. G. H. Geiger and D. R. Poirier, Transport Phenomena in Metallurgy, (Addision-Wesley, Reading, MA, 1980), p. 464.

    Google Scholar 

  29. E. J. Opila, Journal of the American Ceramic Society 78, 1107 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to Terry McCue, ASRC Aerospace/NASA Glenn for electron microscopy. Helpful comments by Drs. T. Narushima, Tohoku University, Japan and E. Opila, University of Virginia are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Jacobson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobson, N.S., Myers, D.L. Active Oxidation of SiC. Oxid Met 75, 1–25 (2011). https://doi.org/10.1007/s11085-010-9216-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-010-9216-4

Keywords

Navigation