Skip to main content
Log in

Sub-Scale Depletion and Enrichment Processes During High Temperature Oxidation of the Nickel Base Alloy 625 in the Temperature Range 900–1000 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Numerous chromia-forming austenitic steels and nickel-base alloys contain chromium-rich strengthening precipitates, e.g. chromium-base carbides. During high temperature exposure the formation of the chromia base oxide scale results in chromium depletion in the alloy matrix and consequently in dissolution of the strengthening phase in the sub-surface zone. The present study describes the oxidation induced phase changes in the chromium depletion layer in case of alloy 625, a nickel base alloy in which the strengthening precipitates contain hardly any or only minor amounts of chromium. Specimens of alloy 625 were subjected to oxidation up to 1000 h at 900 and 1000 °C and analyzed in respect to oxide formation and microstructural changes using light optical microscopy, scanning electron microscopy, energy and wavelength dispersive analysis, glow discharge optical emission spectroscopy, and X-ray diffraction. In spite of the fact that the alloy precipitates δ-Ni3Nb and/or (Ni, Mo)6C contain only minor amounts of chromium, the oxidation induced chromium depletion results in formation of a wide sub-surface zone in which the precipitate phases are depleted. However, in parallel, substantial niobium diffusion occurs towards the alloy surface resulting in formation of a thin layer of δ-Ni3Nb phase adjacent to the alloy/oxide interface. By modeling phase equilibria and diffusion processes using Thermo-Calc and DICTRA it could be shown that the phase changes in the sub-scale zone are governed by the influence of alloy matrix chromium concentration on the thermodynamic activities of the other alloying elements, mainly niobium and carbon. The δ-phase depletion/enrichment process is caused by a decreasing niobium activity with decreasing chromium concentration whereas the (Ni,Mo)6C dissolution finds its cause in the increasing carbon activity with decreasing chromium content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. D. P. Whittle, D. J. Evans, D. B. Scully, and G. C. Wood, Acta Metallurgica 15, 1421 (1967).

    Article  CAS  Google Scholar 

  2. B. D. Bastow, D. P. Whittle, and G. C. Wood, Oxidation of Metals 12, 413 (1978).

    Article  CAS  Google Scholar 

  3. J. P. T. Vossen, P. Gawenda, K. Rahts, M. Rohrig, M. Schorr, and M. Schütze, Materials at High Temperatures 14, 387 (1997).

    CAS  Google Scholar 

  4. R. Bauer, M. Baccalaro, L. P. H. Jeurgens, M. Pohl, and E. J. Mittemeijer, Oxidation of Metals 69, 265 (2008).

    Article  CAS  Google Scholar 

  5. H. E. Evans and A. T. Donaldson, Oxidation of Metals 50, 457 (1998).

    Article  CAS  Google Scholar 

  6. W. J. Quadakkers and K. Bongartz, Werkstoffe und Korrosion 45, 232 (1994).

    Article  CAS  Google Scholar 

  7. P. Kofstad, High Temperature Oxidation, (Elsevier Applied Science, London and New York, 1988).

    Google Scholar 

  8. C. Wagner, Journal of the Electrochemical Society 103, 571 (1956).

    Article  CAS  Google Scholar 

  9. S. Kihara, J. B. Newkirk, A. Ohtomo, and Y. Saiga, Metallurgical Transactions A 11, 1019 (1980).

    Article  Google Scholar 

  10. T. Sourmail, Materials Science and Technology 17, 1 (2001).

    CAS  Google Scholar 

  11. P. J. Ennis, W. J. Quadakkers, and H. Schuster, Journal de Physique IV 3, 979 (1993).

    CAS  Google Scholar 

  12. D. J. Young and B. Gleeson, Corrosion Science 44, 345 (2002).

    Article  CAS  Google Scholar 

  13. D. Naumenko, V. Shemet, L. Singheiser, and W. J. Quadakkers, Journal of Materials Science 44, 1687 (2009).

    Article  CAS  Google Scholar 

  14. W. G. Sloof and T. J. Nijdam, International Journal of Materials Research 100, 1318 (2009).

    CAS  Google Scholar 

  15. R. N. Durham, B. Gleeson, and D. J. Young, Oxidation of Metals 50, 139 (1998).

    Article  CAS  Google Scholar 

  16. P. Krukovsky, K. Tadlya, A. Rybnikov, V. Kolarik, and W. Stamm, in Diffusion in Materials: Dimat 2004, Pt 1 and 2 (Trans Tech Publications Ltd, Zurich-Uetikon, 2005) p. 985.

  17. D. Renusch, M. Schorr, and M. Schütze, Materials and Corrosion 59, 547 (2008).

    Article  CAS  Google Scholar 

  18. K. V. Dahl, J. Hald, and A. Horsewell, in Diffusion in Solids and LiquidsMASS DIFFUSION, ed. A. Öchsner and J. Grácio (Trans Tech Publications Ltd, Stafa-Zurich, 2006), p. 73.

  19. E. Y. Lee, D. M. Chartier, R. R. Biederman, and R. D. Sisson, Surface and Coatings Technology 32, 19 (1987).

    Article  CAS  Google Scholar 

  20. J. A. Nesbitt, Oxidation of Metals 44, 309 (1995).

    Article  CAS  Google Scholar 

  21. T. J. Nijdam and W. G. Sloof, Acta Materialia 56, 4972 (2008).

    Article  CAS  Google Scholar 

  22. R. Cozar and A. Pineau, Metallurgical Transactions 4, 47 (1973).

    Article  CAS  Google Scholar 

  23. M. D. Mathew, P. Parameswaran, and K. B. S. Rao, Materials Characterization 59, 2008 (508).

    Article  CAS  Google Scholar 

  24. J. Froitzheim, G. H. Meier, L. Niewolak, P. Ennis, H. Hattendorf, L. Singheiser, and W. J. Quadakkers, Journal of Power Sources 178, 163 (2008).

    Article  CAS  Google Scholar 

  25. P. D. Jablonski, C. J. Cowen, and J. S. Sears, Journal of Power Sources 195, 813 (2010).

    Article  CAS  Google Scholar 

  26. Z. G. Yang, G. G. Xia, C. M. Wang, Z. M. Nie, J. Templeton, J. W. Stevenson, and P. Singh, Journal of Power Sources 183, 660 (2008).

    Article  CAS  Google Scholar 

  27. V. Kochubey, H. Al Badairy, J. Le Coze, D. Naumenko, G. J. Tatlock, E. Wessel, and W. J. Quadakkers, Materials at High Temperatures 22, 461 (2005).

    Article  CAS  Google Scholar 

  28. H. Nickel, W. J. Quadakkers, and L. Singheiser, Analytical and Bioanalytical Chemistry 374, 581 (2002).

    Article  CAS  Google Scholar 

  29. B. Jansson, M. Schalin, M. Selleby, and B. Sundman, in Computer Software in Chemical and Extractive Metallurgy, ed. C. W. Bale and G. A. Irons (Canadian Inst Mining, Metallurgy and Petroleum, Montreal, 1993), p. 57.

  30. A. Taylor and K. Sachs, Nature 169, 411 (1952).

    Article  CAS  Google Scholar 

  31. M. J. Godden and J. Beech, Journal of Metals 21, A43 (1969).

    Google Scholar 

  32. T. M. Williams and J. M. Titchmarsh, Journal of Nuclear Materials 87, 398 (1979).

    Article  CAS  Google Scholar 

  33. X. M. Guan and H. Q. Ye, Journal of Materials Science 15, 2935 (1980).

    Article  CAS  Google Scholar 

  34. S. Hamar-Thibault, N. Valignat, and S. Lebaili, in X-Ray Optics and Microanalysis, ed. P. B. Kenway (Manchester, 1992), p. 189.

  35. S. Lebaili, J. Ajao, and S. Hamarthibault, Journal of Alloys and Compounds 188, 87 (1992).

    Article  CAS  Google Scholar 

  36. M. Sundararaman, L. Kumar, G. E. Prasad, P. Mukhopadhyay, and S. Banerjee, Metallurgical and Materials Transactions A 30, 41 (1999).

    Article  Google Scholar 

  37. H. M. Tawancy, I. M. Allam, and N. M. Abbas, Journal of Materials Science Letters 9, 343 (1990).

    Article  CAS  Google Scholar 

  38. E. Essuman, G. H. Meier, J. Zurek, M. Hansel, T. Norby, L. Singheiser, and W. J. Quadakkers, Corrosion Science 50, 1753 (2008).

    Article  CAS  Google Scholar 

  39. P. Huczkowski, S. Ertl, J. Piron-Abellan, N. Christiansen, T. Hofler, V. Shemet, L. Singheiser, and W. J. Quadakkers, Materials at High Temperatures 22, 253 (2005).

    Article  CAS  Google Scholar 

  40. W. E. Moddeman, S. M. Craven, and D. P. Kramer, Metallurgical Transactions A 17, 351 (1986).

    Article  Google Scholar 

  41. F. Delaunay, C. Berthier, M. Lenglet, and J. M. Lameille, Mikrochimica Acta 132, 337 (2000).

    Article  CAS  Google Scholar 

  42. E. N’Dah, M. P. Hierro, K. Borrero, and F. J. Perez, Oxidation of Metals 68, 9 (2007).

    Article  Google Scholar 

  43. A. Borgenstam, A. Engstrom, L. Hoglund, and J. Agren, Journal of Phase Equilibria 21, 269 (2000).

    Article  CAS  Google Scholar 

  44. L. S. Darken, Transactions of the American Institute of Mining and Metallurgical Engineers 180, 430 (1949).

    Google Scholar 

  45. H. Strandlund and H. Larsson, in Defects and Diffusion in Metalsan Annual Retrospective Vii, ed. D. J. Fisher (Trans Tech Publications Ltd, Zurich-Uetikon, 2004), p. 97.

  46. P. Huczkowski, Forschungszentrum Jülich, Germany, Jülich, 2009, unpublished results.

  47. M. Michalik, M. Hansel, J. Zurek, L. Singheiser, and W. J. Quadakkers, Materials at High Temperatures 22, 213 (2005).

    Article  CAS  Google Scholar 

  48. V. B. Trindade, U. Krupp, P. E. G. Wagenhuber, and H. J. Christ, Materials and Corrosion 56, 785 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the German Research Foundation (DFG) under project SFB 561. The authors are also grateful to Mr. H. Cosler and Ms. A. Kick for carrying out the oxidation tests, Mr. V. Gutzeit and Mr. J. Bartsch for optical microscopy, Dr. E. Wessel for SEM investigations and Mr. M. Ziegner for XRD analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chyrkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chyrkin, A., Huczkowski, P., Shemet, V. et al. Sub-Scale Depletion and Enrichment Processes During High Temperature Oxidation of the Nickel Base Alloy 625 in the Temperature Range 900–1000 °C. Oxid Met 75, 143–166 (2011). https://doi.org/10.1007/s11085-010-9225-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-010-9225-3

Keywords

Navigation