Skip to main content
Log in

Cyclic Oxidation Behavior of IN 718 Superalloy in Air at High Temperatures

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Ni-base superalloy IN 718 was cyclically oxidized in laboratory air at temperatures ranging from 750 to 950 °C for up to 12 cycles (14 h/cycle). The kinetic behaviour as well as the surface morphology, and the oxide phases of the scales were characterized by means of weight gain measurements, cyclic oxidation kinetics, scanning electron microscopy equipped with energy dispersive spectroscopy (SEM-EDS), and X-ray diffraction (XRD) analysis techniques. The results showed that as the oxidation temperature increased, the oxidation rate, the external scale thickness, and internal oxidation zone increased. It was suggested that the oxidation rate was controlled by the diffusion of substrate elements in the alloy and the inward diffusion of oxygen through the oxide scale. The oxidation kinetics followed a sub-parabolic rate law and, the activation energy of oxidation was 249 ± 20 kJ mol−1. The scaling process was controlled mainly by the diffusion of chromium, titanium, manganese, and oxygen ions through the chromia scale. IN 718 showed low weight gain and very slow reaction rates of substrate elements at 750 °C. At 850 °C, a continuous and very thin oxide scale was formed. At 950 °C, XRD and EDS-elemental mapping analysis revealed that a complex oxide scale had formed. It consisted of an outermost layer of TiO2–MnCr2O4 spinels, inner layer of Cr2O3, and the inner most layer composed of Ni3Nb enriched with Nb, Ti and Al oxides underneath the chromia layer. The oxide scale at this temperature seemed to be thicker layer, significant spallation and volatilization had apparently occurred, and greater internal corrosion was identified. The doping effect of titanium was observed, where it was found to be diffused through the chromia scale to form TiO2 at the oxide-gas interface as well as internally and at the oxide alloy interface. The amount of rutile (TiO2) at the oxide surface increased with temperature. In view of Mn contents in the alloy, the manganese–chromium spinel oxide was inferred to have played an important role in cyclic oxidation behaviour of IN 718, where the change in oxidation kinetic was noted. The Al contents would cause internal Al-rich oxide formation at grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. S. Pampana, MSc. Thesis, Louisiana State University and Agricultural and Mechanical College, August 2004.

  2. www.specialmetals.com. Accessed 2001.

  3. X. S. Xie, J. X. Dong and M. C. Zhang, Materials Science Forum 539–543, 262 (2007).

    Article  Google Scholar 

  4. Il. Ho Kim and S. I. Kwun, Materials Science Forum 486–487, 109 (2005).

    Article  Google Scholar 

  5. H. Park, H. Kim, Y. Huh, M. Kim, S. Park, J. Koo and C. Seok, Key Engineering Materials 353–358, 523 (2007).

    Article  Google Scholar 

  6. L. Zhou, Computational Materials Science 7(3), 336 (1997).

    Article  CAS  Google Scholar 

  7. S. Gossé, T. Alpettaz, S. Chatain and C. Guéneau, Journal of Engineering for Gas Turbines and Power 131, 062901 (2009).

    Article  Google Scholar 

  8. J. Zurek, D. J. Young, E. Essuman, M. Hänsel, H. J. Penkalla, L. Niewolak and W. J. Quadakkers, Materials Science and Engineering A 477, 259 (2008).

    Article  Google Scholar 

  9. F. J. Perez, M. J. Cristobal, M. P. Hierro and F. Pedraza, Surface and Coatings Technology 120–121, 442 (1999).

    Article  Google Scholar 

  10. G. R. Holcomb and D. E. Alman, Scripta Materialia 54, 1821 (2006).

    Article  CAS  Google Scholar 

  11. M. P. Brady, W. J. Brindley, J. L. Smialek and I. E. Locci, Journal of Meterology 48, 46 (1996).

    CAS  Google Scholar 

  12. I. C. I. Okafor and R. G. Reddy, Journal of Meterology 51, 35 (1999).

    CAS  Google Scholar 

  13. S. Chevalier, G. Bonnet, K. Przybylski, J. C. Colson and J. P. Larpin, Oxidation of Metals 54, 527 (2000).

    Article  CAS  Google Scholar 

  14. S. Taniguchi, Y. Shibata and A. Murakami, Oxidation of Metals 41, 103 (1994).

    Article  Google Scholar 

  15. H. Kawaura, H. Kawahara, K. Nishino and T. Saito, Materials Science and Engineering A329, 589 (2002).

    Google Scholar 

  16. V. B. Trindade, U. Krupp, B. Z. Hangari, S. Yang and H. Christ, Materials Research 8, 371 (2005).

    CAS  Google Scholar 

  17. V. B. Trindade, U. Krupp, B. Z. Hangari, S. Yang, R. Borin and H. Christ, Materials Research 8, 365 (2005).

    CAS  Google Scholar 

  18. D. Caplan and M. Cohen, Corrosion Science 6, 321 (1966).

    Article  CAS  Google Scholar 

  19. C. Ostwald and H. J. Grabke, Corrosion Science 46, 1113 (2004).

    Article  CAS  Google Scholar 

  20. J. M. Rakowski, G. H. Meier and F. S. Pettit, Scripta Materialia 35, 1417 (1996).

    Article  CAS  Google Scholar 

  21. H. J. Grabke, E. M. Muller-Lorenz, S. Strauss, E. Pippel and J. Woltersdorf, Oxidation of Metals 50, 241 (1998).

    Article  CAS  Google Scholar 

  22. P. S. N. Stokes, F. H. Stott and G. C. Wood, Material Science and Engineering A 121, 549 (1989).

    Article  Google Scholar 

  23. A. Atkinson and R. I. Taylor, Philosophical Magazine A 39, 581 (1979).

    Article  CAS  Google Scholar 

  24. F. A. Khalid and S. E. Benjamin, Electron Microscopy 2, 183 (1998).

    CAS  Google Scholar 

  25. T. L. Wolfsdorf, W. H. Bender and P. W. Voorhees, Acta Metallurgica 45, 2279 (1997).

    CAS  Google Scholar 

  26. G. A. Greene and C. C. Finfrock, Oxidation of Metals 55, 505 (2001).

    Article  CAS  Google Scholar 

  27. H. Singh, D. Puri, and S. Prakash, International Symposium of Research Students on Materials Science and Engineering, Chennai, India, December 20–22, 2004.

  28. J. Huang, H. Fang, X. Fu, F. Huang, H. Wan, Q. Zhang, S. Deng and J. Zu, Oxidation of Metals 53, 273 (2000).

    Article  CAS  Google Scholar 

  29. F. Rabbani, L. P. Ward, and K. N. Strafford, Oxidation of Metals 54(1/2), 139 (2000).

    Google Scholar 

  30. P. Kofstad, High Temperature Corrosion, (Elsevier, London, 1988).

    Google Scholar 

  31. B. Pieraggi, Material Science and Engineering 88, 199 (1987).

    Article  CAS  Google Scholar 

  32. S. Esmaeili, C. C. Engler-Pinto Jr., B. Ilschner and F. Rézaï-Aria, Scripta Materialia 32, 1777 (1995).

    Article  CAS  Google Scholar 

  33. B. D. Prasad, S. N. Sankran, K. E. Wiedermann and D. E. Glass, Thin Solid Films 345, 255 (1999).

    Article  CAS  Google Scholar 

  34. B. Gleeson, and B. Li, Corrosion 2001, NACE International, Houston, TX, March 11–16, 2001.

  35. F. Abe, H. Araki, M. Okada and H. Yoshida, Transactions of the Iron and Steel Institute of Japan 25, 424 (1985).

    CAS  Google Scholar 

  36. M. Shindo and T. Kondo, Tetsu-lo-Hagane 68, 1628 (1982).

    CAS  Google Scholar 

  37. H. Buscail, S. Perrier, and C. Josse, Materials and Corrosion, 2010 (61).

  38. H. Buscail, S. El Messki, F. Riffard, S. Perrier, R. Cueff, E. Caudron and C. Issartel, Materials, Chemistry and Physics 111, 491 (2008).

    Article  CAS  Google Scholar 

  39. L. Kumar, R. Venkataramani, M. Sundaraman, P. Mukhopadhyay and S. P. Garg, Oxidation of Metals 45, 221 (1996).

    Article  CAS  Google Scholar 

  40. R. E. Lobnig, H. P. Schmidt, K. Hennesen and H. J. Grabke, Oxidation of Metals 37, 81 (1992).

    Article  CAS  Google Scholar 

  41. H. Buscail, S. El Messki, F. Riffard, S. Perrier, R. Cueff and C. Issartel, Journal of Materials Science 43, 6960 (2008).

    Article  CAS  Google Scholar 

  42. G. Ben Abderrazik, G. Moulin and M. Huntz, Oxidation of Metals 33, 191 (1990).

    Article  CAS  Google Scholar 

  43. T. Sun Jo, D. Kim and S. Kim, Metals and Materials International 14, 739 (2008).

    Article  Google Scholar 

  44. M. G. E. Cox, B. McEnany and V. D. Scott, Philosophical Magazine 26, 839 (1972).

    Article  CAS  Google Scholar 

  45. C. Berthier, J. M. Lameille, M. Lenglet, D. Abida, J. Lopitaux and E. Beucher, Materials Science Forum 251–254, 1997 (1997).

    Google Scholar 

  46. C. Berthier, J. M. Lameille, M. Lenglet, D. Abida, J. Lopitaux and E. Beucher, Materials Science Forum 89, 251 (1996).

    Google Scholar 

  47. L. Antoni and B. Baroux, Review Meteorology (Paris) 99, 177 (2002).

    CAS  Google Scholar 

  48. F. Rouillard, C. Cabet, K. Wolski and M. Pijolat, Oxidation of Metals 68, 133 (2007).

    Article  CAS  Google Scholar 

  49. D. M. England and A. V. Virkar, Journal of the Electrochemical Society 146, 3196 (1996).

    Article  Google Scholar 

  50. F. Riffard, H. Buscail, E. Caudron, R. Cueff, C. Issartel and S. Perrier, Corrosion Science 45, 2867 (2003).

    Article  CAS  Google Scholar 

  51. L. Jian, P. Jian, H. Bing and G. Xie, Journal of Power Sources 159, 641 (2006).

    Article  CAS  Google Scholar 

  52. N. Hussain, K. A. Shahid, I. H. Khan and S. Rahman, Oxidation of Metals 43, 363 (1995).

    Article  CAS  Google Scholar 

  53. A. M. Huntz, Journal of Physics III 5, 1729 (1995).

    CAS  Google Scholar 

  54. M. Landkof, A. V. Levy, D. H. Boone, R. Gray and E. Yaniv, Corrosion Science 41, 344 (1985).

    CAS  Google Scholar 

  55. C. S. Tedmon, Journal of Electrochemical Society 113, 766 (1966).

    Article  CAS  Google Scholar 

  56. E. N. _dah, M. P. Hierro, K. Borrero and F. J. Perez, Oxidation of Metals 68, 9 (2007).

    Article  Google Scholar 

  57. F. Delaunay, C. Berthier, M. Lenglet and J. Lameille, Mikrochimica Acta 132, 337 (2000).

    Article  CAS  Google Scholar 

  58. P. Elliot and A. F. Hampton, Oxidation of Metals 14, 449 (1980).

    Article  Google Scholar 

  59. D. Kim, C. Jang and W. Ryu, Oxidation of Metals 71, 271 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work has been funded to a large extent by German Academic Exchange Service (Deutscher Akademisher Austaausch DAAD) under code number: A/09/08208, which is gratefully acknowledged by the authors. Mr. H.-G. Kleinheider (Metallographic examinations), Mrs. K. Mey (SEM & XRD analysis) are thanked for the Characterization work. Dr. U. Krupp, Mr. M. Kantehm, and Mr. A.Giertler are thanked for their support as well as all the staff of the Mechanical Engineering Department-University of Applied Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. A. Al-hatab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-hatab, K.A., Al-bukhaiti, M.A., Krupp, U. et al. Cyclic Oxidation Behavior of IN 718 Superalloy in Air at High Temperatures. Oxid Met 75, 209–228 (2011). https://doi.org/10.1007/s11085-010-9230-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-010-9230-6

Keywords

Navigation