Skip to main content
Log in

Effect of H2S on High Temperature Corrosion of Fe–Ni–Cr Alloys in Carburizing/Oxidizing Environments

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

This investigation involves the corrosion behavior of two Fe–Ni–Cr alloys containing different Si content at 1050 °C in carburizing-oxidizing environments (typical of ethylene pyrolysis) with varied concentration of H2S. High-Si containing alloy could form thinner but less uniform oxide scale than low-Si alloy after pre-oxidation due to the barrier effect of continuous SiO2 at interface of scale/substrate. Pre-oxidized alloy showed a better resistance to carburization/sulfidation attacks than the bare alloy in absence of pre-oxidation. It was found that carburization and sulfidation of the Fe–Ni–Cr alloys could be prevented in the environment with a ratio of \( P_{{{\text{H}}_{ 2} {\text{S}}}} /P_{{{\text{H}}_{ 2} }} \) at 1.7 × 10−5. When the sulfur partial pressure was lower than this value, oxides were found to be converted to porous and non-protective carbides. When the sulfur potentials were increased, manganese or chromium sulfide on outer layer and internal sulfide stringers mixed with silicon oxide in substrate could be formed. Under high sulfur partial pressures, spallation of outer sulfide or oxide scale was observed on high-Si alloy due to less stability of oxide layer formed at surface which was converted to sulfide faster than on low-Si alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. C. M. Chun and T. A. Ramanarayanan, Oxidation of Metals 67, 2007 (215).

    Article  CAS  Google Scholar 

  2. P. R. Wilson and Z. Chen, Corrosion Science 49, 2007 (1305).

    Article  CAS  Google Scholar 

  3. H. Li, Y. Zheng, L. W. Benum, M. Oballa and W. Chen, Corrosion Science 51, 2009 (2336).

    Article  CAS  Google Scholar 

  4. Y. Nishiama, N. Otsukan and T. Nishizawa, Corrosion 59, 2003 (688).

    Article  Google Scholar 

  5. J. S. Dunning, D. E. Alman and J. C. Rawers, Oxidation of Metals 57, 2002 (409).

    Article  CAS  Google Scholar 

  6. A. Schneider, H. Viefhaus, G. Inden, H. J. Grabke and E. M. Müller-Lorenz, Materials and Corrosion 49, 1998 (336).

    Article  CAS  Google Scholar 

  7. Y. Iguchi, S. Sawai and K. Ohiwa, Metallurgical and Materials Transactions B 32B, 2001 (1161).

    Article  CAS  Google Scholar 

  8. A. Schneider, H. Viefhaus and G. Inden, Materials and Corrosion 51, 2000 (338).

    Article  CAS  Google Scholar 

  9. T. A. Ramanarayanan, Materials Science and Engineering 87, 1987 (113).

    Article  CAS  Google Scholar 

  10. T. A. Ramanarayanan and D. J. Srolovitz, Journal of the Electrochemical Society 132, 1985 (2268).

    Article  CAS  Google Scholar 

  11. H. J. Grabke, D. Moszynski, E. M. Müller-Lorenz and A. Schneider, Surface and Interface Analysis 34, 2002 (369).

    Article  CAS  Google Scholar 

  12. J. Barnes, J. Corish and J. F. Norton, Oxidation of Metals 26, 1986 (333).

    Article  CAS  Google Scholar 

  13. R. E. Lobnig, H. P. Schmidt, K. Hennesen and H. J. Grabke, Oxidation of Metals 37, 1992 (81).

    Article  CAS  Google Scholar 

  14. A. L. Marasco and D. J. Young, Oxidation of Metals 36, 1991 (157).

    Article  CAS  Google Scholar 

  15. F. H. Stoot, F. I. Wei and C. A. Enahoro, Werkstoffe und Korrosion 40, 1989 (198).

    Article  Google Scholar 

  16. A. A. Kaya, P. Krauklis and D. J. Young, Materials Characterization 49, 2002 (11).

    Article  CAS  Google Scholar 

  17. Y. Liu, W. Wei, L. Benum, M. Oballa, M. Gyorffy and W. Chen, Oxidation of Metals 73, 2010 (207).

    Article  CAS  Google Scholar 

  18. G. Bamba, Y. Wouters, A. Galerie, F. Charlot and A. Dellali, Acta Materialia 54, 2006 (3917).

    Article  CAS  Google Scholar 

  19. S. N. Basu and G. J. Yurek, Oxidation of Metals 35, 1991 (441).

    Article  CAS  Google Scholar 

  20. C. S. Giggins and F. S. Pettit, Oxidation of Metals 14, 1980 (363).

    Article  CAS  Google Scholar 

  21. H. Xu, M. G. Hocking and P. S. Sidky, Oxidation of Metals 41, 1994 (81).

    Article  CAS  Google Scholar 

  22. O. K. Chopra and K. Natesan, High Temperature Science 9, 1977 (243).

    CAS  Google Scholar 

  23. H. Cabibi and J. A. Kelber, Surface Science 373, 1997 (257).

    Article  Google Scholar 

  24. H. J. Grabke, E. M. Petersen and S. R. Srinivasan, Surface Science 67, 1977 (501).

    Article  CAS  Google Scholar 

  25. H. Li and W. Chen, Corrosion Science 52, 2010 (2481).

    Article  CAS  Google Scholar 

  26. H. Li, X. Cui and W. Chen, Journal of the Electrochemical Society 157, 2010 (C321).

    Article  CAS  Google Scholar 

  27. M. Labranche, A. Garratt-Reed and G. J. Yurek, Journal of the Electrochemical Society 130, 1983 (2405).

    Article  CAS  Google Scholar 

  28. S. Mrowec, Oxidation of Metals 44, 1995 (177).

    Article  CAS  Google Scholar 

  29. Y. Chen, Z. Liu, S. P. Ringer, Z. Tong, X. Cui and Y. Chen, Crystal Growth and Design 7, 2007 (2279).

    Article  CAS  Google Scholar 

  30. H. Hindam and D. P. Whittle, Corrosion 38, 1982 (33).

    Article  Google Scholar 

  31. D. J. Young, in High Temperature Oxidation and Corrosion of Metals, ed., D. J. Young (Elesevier, Amsterdam, 2008).

Download references

Acknowledgments

The authors would like to thank Natural Science and Engineering Research Council of Canada, NOVA Chemicals Limited and Kubota Metal Corporation Canada for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixing Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Chen, W. Effect of H2S on High Temperature Corrosion of Fe–Ni–Cr Alloys in Carburizing/Oxidizing Environments. Oxid Met 77, 107–127 (2012). https://doi.org/10.1007/s11085-011-9276-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-011-9276-0

Keywords

Navigation