Skip to main content
Log in

Water Vapor Effects on the Oxidation Behavior of Fe–Cr and Ni–Cr Alloys in Atmospheres Relevant to Oxy-fuel Combustion

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behavior of a number of Fe–Cr- and Ni–Cr-based alloys was studied in atmospheres relevant to oxyfuel combustion at 650 °C. Oxidation was greatly enhanced in ferritic model alloys exposed in low p(O2) CO2 + 30%H2O and Ar + 30%H2O gases. Rapidly growing iron oxides appear to be porous and gas permeable. Transition from non-protective to protective oxidation occurs on alloys with higher Cr contents between 13.5 and 22 wt% in H2O. Excess oxygen, usually found in the actual oxyfuel combustion environments, disrupts the selective oxidation of Fe–Cr alloys by accelerating vaporization of early-formed Cr2O3 in combination with accelerated chromia growth induced by the H2O. Rapid Cr consumption leads to the nucleation and rapid growth of iron oxides. On the contrary, Ni–Cr alloys are less affected by the presence of H2O and excess O2. The difference between Fe–Cr and Ni–Cr alloys is not clear but is postulated to involve less acceleration of chromia growth by water vapor for the latter group of alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Viswanathan, J. Sarver and J. M. Tanzosh, Journal of Materials Engineering and Performance 15, 255 (2006).

    Article  CAS  Google Scholar 

  2. G. R. Holcomb, Environmental Degradation—Steam Oxidation, in Power Plant Life Management and Performance Improvement, ed. J. E. Oakey, Chapt. 11 (Woodhead Publishing, Cambridge, 2011), ISBN: 978-1-84569-726-6.

  3. J. P. Abellán, T. Olszewski, G. H. Meier, L. Singheiser and W. J. Quadakkers, International Journal of Materials Research 101, 287 (2010).

    Article  Google Scholar 

  4. J. Shen, L. Zhou and T. Li, Oxidation of Metals 48, 347 (1997).

    Article  Google Scholar 

  5. D. L. Douglass, P. Kofstad, A. Rahmel and G. C. Wood, Oxidation of Metals 45, 529 (1996).

    Article  CAS  Google Scholar 

  6. K. Hilpert, D. Das, M. Miller, D. H. Peck and R. Weiss, Journal of the Electrochemical Society 143, 3642 (1996 ).

    Article  CAS  Google Scholar 

  7. H. Asteman, J.-E. Svensson and L.-G. Johansson, Oxidation of Metals 57, 193 (2002).

    Article  CAS  Google Scholar 

  8. G. R. Holcomb, Chromia Evaporation in Advanced Ultra-Supercritical Steam Boilers and Turbines, in Thermodynamics—Kinetics of Dynamic Systems, ed. J. C. Moreno-Piraján, Chapt. 9 (InTech, Rijeka, Croatia, 2011) ISBN: 978-953-307-318-7.

  9. H. Asteman, J.-E. Svensson, L.-G. Johansson and M. Norell, Oxidation of Metals 52, 95 (1999).

    Article  CAS  Google Scholar 

  10. A. Galerie, S. Henry, Y. Wouters, M. Mermoux, J.-P. Petit and L. Antoni, Materials at High Temperatures 22, 105 (2005).

    Article  CAS  Google Scholar 

  11. C. T. Fujii and R. A. Meussner, Journal of the Electrochemical Society 111, 1215 (1964).

    Article  CAS  Google Scholar 

  12. A. Galerie, Y. Wouters and M. Caillet, Material Science Forum 369–372, 237 (2001).

    Google Scholar 

  13. A. Rahmel and J. Tobolski, Corrosion Science 5, 333 (1965).

    Article  CAS  Google Scholar 

  14. D. Renusch and M. Schütze, Materials at High Temperatures 22, 34 (2005).

    Article  Google Scholar 

  15. E. Essuman, G. H. Meier, J. Żurek, M. Hänsel, L. Singheiser and W. J. Quadakkers, Scripta Materialia 57, 845 (2007).

    Article  CAS  Google Scholar 

  16. M. H. B. Ani, T. Kodama, M. Ueda, K. Kawamura and T. Maruyama, Materials Transactions 50, 256 (2009).

    Article  Google Scholar 

  17. M. Michalik, M. Hänsel, J. Żurek, L. Singheiser and W. J. Quadakkers, Materials at High Temperatures 22, 213 (2005).

    Article  CAS  Google Scholar 

  18. S. Henry, J. Mougin, Y. Wouters, J.-P. Petit and A. Galerie, Materials at High Temperatures 17, 231 (2000).

    Article  CAS  Google Scholar 

  19. N. K. Othman, J. Zhang and D. J. Young, Oxidation of Metals 73, 337 (2010).

    Article  CAS  Google Scholar 

  20. G. H. Meier, K. Jung, N. Mu, N. M. Yanar, F. S. Pettit, J. P. Abellán, T. Olszewski, L. N. Hierro, W. J. Quadakkers and G. R. Holcomb, Oxidation of Metals 74, 319 (2010).

    Article  CAS  Google Scholar 

  21. Materials Preparation Center at the U.S. Department of Energy’s Ames Laboratory; http://www.ameslab.gov/mpc. Accessed Feb 2012.

  22. http://www.netl.doe.gov/. Accessed Feb 2012.

  23. H. Davies and A. Dinsdale, Materials at High Temperatures 22, 15 (2005).

    Article  CAS  Google Scholar 

  24. H. E. Evans, International Materials Review 40, 1 (1995).

    Article  CAS  Google Scholar 

  25. M. Schütze, D. Renusch and M. Schorr, Corrosion Engineering, Science and Technology 39, 157 (2004).

    Article  Google Scholar 

  26. A. Donchev, H. Fietzek, V. Kolarik, D. Renusch and M. Schütze, Materials at High Temperatures 22, 139 (2005).

    Article  CAS  Google Scholar 

  27. B. A. Nevzorov, O. V. Starkov and N. G. Baranov, Zaschita Metallov 6, 349 (1970).

    CAS  Google Scholar 

  28. W. J. Quadakkers, P. J. Ennis, J. Żurek and M. Michalik, Materials at High Temperatures 22, 47 (2005).

    Article  CAS  Google Scholar 

  29. W. J. Quadakkers, T. Olszewski, J. Piron-Abellán, V. Shemet and L. Singheiser, Materials Science Forum 696, 194 (2011).

    Article  CAS  Google Scholar 

  30. T. Gheno, D. Monceau, J. Zhang and D. J. Young, Corrosion Science 53, 2767 (2011).

    Article  CAS  Google Scholar 

  31. C. Anghel, E. Hörnlund, G. Hultquist and M. Limbäck, Applied Surface Science 233, 392 (2004).

    Article  CAS  Google Scholar 

  32. C. S. Giggins and F. S. Pettit, Oxidation of Metals 14, 363 (1980).

    Article  CAS  Google Scholar 

  33. C. Wagner, Journal of the Electrochemical Society 99, 369 (1956 ).

    Article  Google Scholar 

  34. R. A. Rapp, Acta Metallurgica 9, 730 (1961).

    Article  CAS  Google Scholar 

  35. F. Gesmundo and F. Viani, Oxidation of Metals 25, 269 (1986).

    Article  CAS  Google Scholar 

  36. C. Wagner, Zeitschrift für Elektrochemie 63, 772 (1959).

    CAS  Google Scholar 

  37. M. Hänsel, W. J. Quadakkers and D. J. Young, Oxidation of Metals 59, 285 (2003).

    Article  Google Scholar 

  38. A. Milewska, M. P. Hierro, J. A. Trilleros, F. J. Bolivar and F. J. Perez, Materials Science Forum 461–464, 321 (2004).

    Article  Google Scholar 

  39. R. J. Ehlers, D. J. Young, E. J. Smaardijk, A. K. Tyagi, H. J. Penkalla, L. Singheiser and W. J. Quadakkers, Corrosion Science 48, 3428 (2006).

    Article  CAS  Google Scholar 

  40. A. Rahmel, Corrosion Science 5, 815 (1965).

    Article  CAS  Google Scholar 

  41. J. Zurek, D. J. Young, E. Essuman, M. Hänsel, H. J. Penkalla, L. Niewolek and W. J. Quadakkers, Materials Science and Engineering A 477, 259 (2008).

    Article  Google Scholar 

Download references

Acknowledgments

This work at University of Pittsburgh was performed in support of the National Energy Technology Laboratory’s ongoing research on Advanced Combustion under RES contract DE-FE0004000. The authors are most grateful to Prof. Shigenari Hayashi for help with the GD-OES measurements.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Yanar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mu, N., Jung, K.Y., Yanar, N.M. et al. Water Vapor Effects on the Oxidation Behavior of Fe–Cr and Ni–Cr Alloys in Atmospheres Relevant to Oxy-fuel Combustion. Oxid Met 78, 221–237 (2012). https://doi.org/10.1007/s11085-012-9302-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-012-9302-x

Keywords

Navigation