Skip to main content
Log in

Comparative Study on High Temperature Oxidation of T92 Steel in Dry and Wet Oxyfuel Environments

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Fireside oxidation of T92 steel was studied after exposure times up to 1000 h in the temperature range of 580–650 °C in simulated dry (CO2–27 % N2–2 % O2–1 % SO2) and wet (CO2–20 % H2O–7 % N2–2 % O2–1 % SO2) oxyfuel environments. Water vapour addition to the oxyfuel gas substantially increased the oxidation rate. The oxide scales developed under wet environment contained more defects, resulting in higher access of oxidants to the substrate material and enhanced oxidation. In addition, the oxide scales had lower chromium enrichment in the inner layer as compared to that in the dry condition. The oxide scales consisted of hematite and magnetite in the outer layer and a mixture of (Fe, Cr)-spinel, sulphides and wustite in the inner layer. The sulphur distribution differed between the oxide scales developed in dry and wet oxyfuel environments. Sulphur was mainly concentrated in the inner layer and at the oxide/alloy interface. In contrast to the wet oxyfuel gas, very high sulphur concentration was measured in the inner oxide scale formed in the dry oxyfuel gas. Additionally, Fe-sulphide was formed at the interface of inner and outer oxide layer in the wet condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D. Huenert, W. Schulz and A. Kranzmann, Power Plant Chemistry 12, 344 (2010).

    Google Scholar 

  2. A. Kranzmann, T. Neddemeyer, A. S. Ruhl, D. Huenert, D. Bettge, G. Oder and R. S. Neumann, International Journal of Greenhouse Gas Control 5S, S168 (2011).

    Article  Google Scholar 

  3. B. Bordenet, Materials and Corrosion 59, 361 (2008).

    Article  Google Scholar 

  4. A. U. Syed, N. J. Simms and J. E. Oakey, Fuel 101, 62 (2012).

    Article  Google Scholar 

  5. G. H. Meier, K. Jung, N. Mu, N. M. Yanar, F. S. Petit, J. P. Abellan, T. Olszewski, L. N. Hierro, W. J. Quadakkers and G. R. Holcomb, Oxidation of Metals 74, 319 (2010).

    Article  Google Scholar 

  6. J. Ehlers, D. J. Young, E. J. Smaardijk, A. K. Tyagi, H. J. Penkalla, L. Singheiser and W. J. Quadakkers, Corrosion Science 48, 3428 (2006).

    Article  Google Scholar 

  7. M. Schuetze, M. Schorr, D. P. Renusch, A. Donchev and J. P. T. Vossen, Materials Research 7, 111 (2004).

    Article  Google Scholar 

  8. E. Essuman, G. H. Meier, J. Jurek, M. Hansel, L. Singheiser and W. J. Quadakkers, Scripta Materialia 57, 845 (2007).

    Article  Google Scholar 

  9. E. Essuman, G. H. Meier, J. Jurek, M. Hansel and W. J. Quadakkers, Oxidation of Metals 69, 143 (2008).

    Article  Google Scholar 

  10. N. K. Othman, J. Zhang and D. J. Young, Oxidation of Metals 73, 337 (2010).

    Article  Google Scholar 

  11. L. Sanchez, M. P. Hierro and F. J. Perez, Oxidation of Metals 71, 173 (2009).

    Article  Google Scholar 

  12. I. G. Wright and R. B. Dooley, International Materials Reviews 55, 129 (2010).

    Article  Google Scholar 

  13. N. Mu, K. Y. Jung, N. M. Yanar, G. H. Meier, F. S. Pettit and G. R. Holcomb, Oxidation of Metals 78, 221 (2012).

    Article  Google Scholar 

  14. C. T. Fuji and R. A. Meussner, Journal of the Electrochemical Society 110, 1195 (1963).

    Article  Google Scholar 

  15. A. Rahmel and J. Tobolski, Corrosion Science 5, 333 (1965).

    Article  Google Scholar 

  16. D. J. Young and B. A. Pint, Oxidation of Metals 66, 137 (2006).

    Article  Google Scholar 

  17. S. R. J. Saunders, M. Monteiro and F. Rizzo, Progress in Materials Science 53, 775 (2008).

    Article  Google Scholar 

  18. A. Rahmel, Corrosion Science 13, 125 (1973).

    Article  Google Scholar 

  19. B. Haflan and P. Kofstad, Corrosion Science 23, 1333 (1983).

    Article  Google Scholar 

  20. K. P. Lillerud, B. Haflan and P. Kofstad, Oxidation of Metals 21, 119 (1984).

    Article  Google Scholar 

  21. A. Holt and P. Kofstad, Materials Science and Engineering A 120, 101 (1989).

    Article  Google Scholar 

  22. A. Jardnas, J.-E. Svensson and L.-G. Johansson, Oxidation of Metals 60, 427 (2003).

    Article  Google Scholar 

  23. T. Jonsson, A. Jardnas, J.-E. Svensson, L.-G. Johansson and M. Halvarsson, Oxidation of Metals 67, 193 (2007).

    Article  Google Scholar 

  24. A. Jardnas, J.-E. Svensson and L.-G. Johansson, Oxidation of Metals 69, 249 (2008).

    Article  Google Scholar 

  25. P. Huczkowski, T. Olszewski, M. Schiek, B. Lutz, G. R. Holcomb, V. Shemet, W. Nowak, G. H. Meier, L. Singheiser and W. J. Quadakkers, Materials and Corrosion 65, 121 (2014).

    Article  Google Scholar 

  26. G. Stein-Brzozowska, J. Maier and G. Scheffknecht, Energy Procedia 4, 2035 (2011).

    Article  Google Scholar 

  27. G. Stein-Brzozowska, R. Norling, P. Viklund, J. Maier and G. Scheffknecht, Energy Procedia 51, 234 (2014).

    Article  Google Scholar 

  28. N. Otsuka, Oxidation of Metals 80, 565 (2013).

    Article  Google Scholar 

  29. W. J. Quadakkers, T. Olszewski, J. P. Abellan, V. Shemet and L. Singheiser, Materials Science Forum 696, 194 (2011).

    Article  Google Scholar 

  30. D. Huenert and A. Kranzmann, Corrosion Science 53, 2306 (2011).

    Article  Google Scholar 

  31. T. D. Nguyen, J. Zhang and D. J. Young, Corrosion Science 89, 220 (2014).

    Article  Google Scholar 

  32. F. Rouillard, G. Moine, M. Tabarant and J. C. Ruiz, Oxidation of Metals 77, 57 (2012).

    Article  Google Scholar 

  33. K. Chandra, A. Kranzmann, R. S. Neumann, G. Oder and F. Rizzo, Oxidation of Metals 83, 291 (2015).

    Article  Google Scholar 

  34. International Standard ISO 21608:2012(E): corrosion of metals and alloys—test method for isothermal-exposure oxidation testing under high-temperature corrosion conditions for metallic materials (2012).

  35. J. Zurek, E. Wessel, L. Niewolak, F. Schmitz, T.-U. Kern, L. Singheiser and W. J. Quadakkers, Corrosion Science 46, 2017 (2004).

    Article  Google Scholar 

  36. D. J. Young, J. Zurek, L. Singheiser and W. J. Quadakkers, Corrosion Science 53, 2131 (2011).

    Article  Google Scholar 

  37. L. N. Hierro, V. Rohr, P. J. Ennis, M. Schutze and W. J. Quadakkers, Materials and Corrosion 56, 890 (2005).

    Article  Google Scholar 

  38. A. S. Khanna, P. Rodriguez and J. B. Gnanamoorthy, Oxidation of Metals 26, 171 (1986).

    Article  Google Scholar 

  39. J. Yuan, X. Wu, W. Wamg, S. Zhu and F. Wang, Materials 7, 2772 (2014).

    Article  Google Scholar 

  40. M. Hänsel, W. J. Quadakkers and D. J. Young, Oxidation of Metals 59, 285 (2003).

    Article  Google Scholar 

  41. S. Shen, J. Zhau, C.-Li Dong, Y. Hu, E. N. Tseng, P. Guo, L. Guo and S. Mao, Scientific Reports 4, 6627 (2014). doi:10.1038/srep06627.

    Article  Google Scholar 

  42. X. G. Zheng and D. J. Young, Oxidation of Metals 42, 163 (1994).

    Article  Google Scholar 

  43. F. Rouillard, G. Moine, L. Martinelli and J. C. Ruiz, Oxidation of Metals 77, 27 (2012).

    Article  Google Scholar 

  44. N. Birks, G. H. Meier and F. S. Pettit, Introduction to the High-Temperature Oxidation of Metals, 2nd edn. (Cambridge University Press, Cambridge, 2006).

    Book  Google Scholar 

  45. D. Laverde, T. Gomez-Acebo and F. Castro, Corrosion Science 46, 613 (2004).

    Article  Google Scholar 

  46. R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals 59, 433 (2003).

    Article  Google Scholar 

  47. I. G. Wright, B. A. Pint, Paper No. 02377, NACE Corrosion 2002, Houston, 2002.

  48. T. Jonsson, B. Pujilaksono, H. Heidari, F. Liu, J.-E. Svensson, M. Halvarsson and L.-G. Johansson, Corrosion Science 75, 326 (2013).

    Article  Google Scholar 

  49. K. Segerdahl, J.-E. Svensson, M. Halvarsson, I. Panas and L.-G. Johansson, Materials at High Temperatures 22, 69 (2005).

    Google Scholar 

  50. H. Asteman, J.-E. Svensson and L.-G. Johansson, Oxidation of Metals 57, 193 (2002).

    Article  Google Scholar 

  51. H. Asteman, J.-E. Svensson, M. Norell and L.-G. Johansson, Oxidation of Metals 54, 11 (2000).

    Article  Google Scholar 

  52. M. Halvarsson, J. E. Tang, H. Asteman, J.-E. Svensson and L.-G. Johansson, Corrosion Science 48, 2014 (2006).

    Article  Google Scholar 

  53. E. J. Opila, D. L. Myers, N. S. Jacobson, I. M. B. Nielsen, D. F. Johnson, J. K. Olminsky and M. D. Allendorf, The Journal of Physical Chemistry A 111, 1971 (2007).

    Article  Google Scholar 

  54. G. R. Holcomb, Oxidation of Metals 69, 163 (2008).

    Article  Google Scholar 

  55. C. W. Bale, A. D. Pelton, W. J. Thompson, G. Eriksson, K. Hack, P. Chartrand, S. Decterov, I.-H. Jung, J. Melancon, S. Petersen, FactSage 6.4 (database: FACT), Copyright Thermfact and GTT-Technologies 1976–2013.

  56. S. Jianian, Z. Longjiang and L. Tiefan, Oxidation of Metals 48, 347 (1997).

    Article  Google Scholar 

  57. M. Schuetze, D. Renusch and M. Schorr, Corrosion Engineering, Science and Technology 39, 157 (2004).

    Article  Google Scholar 

  58. M. H. B. Ani, T. Kodama, M. Ueda, K. Kawamura and T. Maruyama, Materials Transactions 50, 2656 (2009).

    Article  Google Scholar 

  59. K. Nakagawa, Y. Matsunaga and T. Yanagisawa, Materials at High Temperatures 20, 67 (2003).

    Article  Google Scholar 

  60. D. Huenert, W. Schulz, H. Nitschke, R. Saliwan-Neumann, A. Kranzmann, Paper No. 09263, NACE Corrosion 2009, Atlanta, Georgia, March 22–26, 2009.

  61. C. S. Giggins and F. S. Pettit, Oxidation of Metals 14, 363 (1980).

    Article  Google Scholar 

  62. A. Rahmel, Oxidation of Metals 9, 401 (1975).

    Article  Google Scholar 

  63. J. Unsworth and D. J. Young, Oxidation of Metals 60, 447 (2003).

    Article  Google Scholar 

  64. J. Gilewicz-Wolter, Oxidation of Metals 46, 129 (1996).

    Article  Google Scholar 

  65. J. Gilewicz-Wolter, Oxidation of Metals 11, 81 (1977).

    Article  Google Scholar 

  66. P. Singh and N. Birks, Werkstoffe and Korrosion 31, 682 (1980).

    Article  Google Scholar 

Download references

Acknowledgments

K. Chandra would like to acknowledge Adolf Martens Foundation for his post-doctoral fellowship program under which this research was carried out. F. Rizzo thanks the support from CAPES, CNPq and FAPERJ. The authors also wish to thank Mr. Goebel Artur for his contribution in conducting the corrosion experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Chandra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, K., Kranzmann, A., Neumann, R.S. et al. Comparative Study on High Temperature Oxidation of T92 Steel in Dry and Wet Oxyfuel Environments. Oxid Met 84, 463–490 (2015). https://doi.org/10.1007/s11085-015-9565-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9565-0

Keywords

Navigation