Skip to main content

Advertisement

Log in

Alloys SS316 and Hastelloy-C276 in Supercritical CO2 at High Temperature

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Commercially available high pressure tubing materials SS316 and Hastelloy-C276, containing a similar chromium content about 17 wt%, were internally pressurised by flowing supercritical CO2 at 20 MPa and heated externally, to 650 °C in the case of SS316, and 650–750 °C in the case of Hastelloy-C276. The stainless steel was found to be corroded by both external oxidation and internal carburisation. The external oxide was initially protective Cr-rich oxide, which was subsequently disrupted by faster growing Fe-rich oxide nodules, leading to loss of protection. In the case of Hastelloy-C276, the corrosion product was principally protective chromium oxide scale, although somewhat thicker regions of the same oxide developed at the site of micro-cracks in the metal surface. Very little carburisation of this alloy was observed up to at least 1000 h exposure. Differences in scaling behaviour are discussed in terms of chromium depletion through internal carbide precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. C. S. Turchi, Z. Ma, T. W. Neises and M. J. Wagner, Journal of Solar Energy Engineering 135, 041007-1 (2013).

    Article  Google Scholar 

  2. J. Pasch, T. Conboy, D. Fleming, and G. Rochau. Supercritical CO 2 Recompression Brayton Cycle: Completed Assembly Description. SANDIA REPORT, SAND2012-9546 (2012), p. 40.

  3. V. Dostal, PhD Thesis, Massachusetts Institute of Technology (2004).

  4. C. T. Fujii and R. A. Meussner, Journal of Electrochemical Society 114, 435 (1967).

    Article  Google Scholar 

  5. F. S. Pettit, J. A. Goebel and G. W. Goward, Corrosion Science 9, 903 (1969).

    Article  Google Scholar 

  6. F. Rouillard, G. Moine, M. Tabarant and J. C. Ruiz, Oxidation of Metals 77, 57 (2012).

    Article  Google Scholar 

  7. F. Rouillard, G. Moine, L. Martinelli and J. C. Ruiz, Oxidation of Metals 77, 27 (2012).

    Article  Google Scholar 

  8. H. E. McCoy, Corrosion 21, 84 (1965).

    Article  Google Scholar 

  9. P. Promdirek, G. Lothongkum, S. Chandra-Ambhorn, Y. Wouters and A. Galerie, Oxidation of Metals 81, 315 (2014).

    Article  Google Scholar 

  10. S. B. Newcomb, W. M. Stobbs and E. Metcalfe, Philosophical Transactions Royal Society A 319, 191 (1986).

    Article  Google Scholar 

  11. W. M. Stobbs, S. B. Newcomb and E. Metcalfe, Philosophical Transactions Royal Society A 319, 219 (1986).

    Article  Google Scholar 

  12. S. Bouhieda, F. Rouillard and K. Wolski, Materials at High Temperatures 29, 151 (2012).

    Article  Google Scholar 

  13. J. Pirón-Abellán, T. Olszewski, H. J. Penkalla, G. H. Meier, L. Shingheiser and W. J. Quadakkers, Materials at High Temperatures 26, 63 (2009).

    Article  Google Scholar 

  14. C. Gleave, J. M. Calvert, D. G. Lee and P. C. Rowlands, Proceedings of The Royal Society London A 379, 409 (1982).

    Article  Google Scholar 

  15. L. Tan, M. Anderson, D. Taylor and T. R. Allen, Corrosion Science 53, 3273 (2011).

    Article  Google Scholar 

  16. G. Cao, V. Firouzdor, K. Shridharan, M. Anderson and T. R. Allen, Corrosion Science 60, 246 (2012).

    Article  Google Scholar 

  17. V. Firouzdor, K. Shridharan, G. Cao, M. Anderson and T. Y. R. Allen, Corrosion Science 69, 281 (2013).

    Article  Google Scholar 

  18. T. Gheno, D. Monceau, J. Zhang and D. Young, Corrosion Science 53, 2767 (2011).

    Article  Google Scholar 

  19. C. Wagner, Journal of The Electrochemical Society 99, 369 (1952).

    Article  Google Scholar 

  20. D. Young, P. Huczkowski, T. Olszewski, L. Singheiser and W. J. Quadakkers, Corrosion Science 85, 1 (2014).

    Article  Google Scholar 

  21. I. Wolf and H. J. Grabke, Solid State Communications 54, 5 (1985).

    Article  Google Scholar 

  22. D. Young, T. D. Nguyen, P. Felter, J. Zhang and J. Cairney, Scripta Materialia 77, 29 (2014).

    Article  Google Scholar 

  23. X. G. Zheng and D. J. Young, Oxidation of Metals 42, 163 (1994).

    Article  Google Scholar 

  24. S. Bouhieda, F. Rouillard, V. Barnier and K. Wolski, Oxidation of Metals 80, 493 (2013).

    Article  Google Scholar 

  25. T. W. Neises, M. J. Wagner, and A. K. Gray, in Proceedings of the 8th International Conference on Energy Sustainability Boston, Massachusetts (30 June–2 July, 2014).

  26. NIDI Designers Handbook-Series No. 9004. High-Temperature Characteristics of Stainless Steel.

  27. Haynes International, personal communication.

  28. T. Furukawa, Y. Inagaki and M. Aritomi, Journal of Power and Energy Systems 4, 252 (2010).

    Article  Google Scholar 

  29. F. Rouillard, F. Charton, and G. Moine, in Proceedings of SCO 2 Power Cycle Symposium 2009 (RPI, Troy, April 29–30, 2009), p. 7.

  30. M. Hansel, C. A. Boddington and D. J. Young, Corrosion Science 45, 967 (2003).

    Article  Google Scholar 

  31. D. J. Young, International Journal of Hydrogen Energy 32, 3763 (2007).

    Article  Google Scholar 

  32. D. R. Holmes, R. B. Hill and L. M. Wyatt, in Corrosion of Steels in CO 2 , eds. D. R. Holmes, R. B. Hill and L. M. Wyatt (British Nuclear Energy Society—BENES, London, 1994).

    Google Scholar 

  33. FactSage 6.4 (Revised May 2013)—Thermochemical software and database. Thermfact/CRCT www.factsage.com

  34. D. J. Young, High Temperature Oxidation and Corrosion of Metals. Elsevier Corrosion Series, 1st ed, (Elsevier, Amsterdam, 2008).

    Google Scholar 

  35. O. Kubaschewski, V. B. B. Alcock, and P. J. Spencer, Materials Thermochemistry. 6th edn revised (Pergamon Press, New York, 1993)

Download references

Acknowledgments

This project has been supported by the Australian Government through the Australian Renewable Energy Agency (ARENA). The Australian Government, through ARENA, is supporting Australian research and development in solar photovoltaic and concentrating solar power technologies to help solar power become cost competitive with other energy sources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Olivares.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olivares, R.I., Young, D.J., Marvig, P. et al. Alloys SS316 and Hastelloy-C276 in Supercritical CO2 at High Temperature. Oxid Met 84, 585–606 (2015). https://doi.org/10.1007/s11085-015-9589-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9589-5

Keywords

Navigation