Skip to main content

Advertisement

Log in

Corrosion of Alloy Haynes 230 in High Temperature Supercritical Carbon Dioxide with Oxygen Impurity Additions

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The corrosion of Ni-based alloy Haynes 230 in supercritical carbon dioxide at temperatures of 650 and 750 °C at a pressure of 20 MPa was investigated. In high-purity research grade CO2, the corrosion performance of the alloy was excellent with a thin, uniform, protective chromium-rich oxide layer forming on the surface. Introduction of 10 and 100 ppm O2 impurity in the CO2 environment noticeably enhanced oxidation with evidence of oxide spallation and nodule formation. In these oxygen impurity added tests, increased oxidation led to subsurface voids due to the more rapid outward diffusion of chromium as well as intergranular alumina and chromia. The oxygen concentration at the inlet and the outlet of the autoclave was measured and used to support the results of characterization of the surface oxide to develop a more holistic understanding of the role of oxygen impurity on the corrosion process. In all cases, there some carbon was observed, which manifested as slightly higher concentration of chromium–carbide phase at the grain boundaries compared to the unexposed alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Gomez, Degradation Mechanisms and Development of Protective Coatings for TES and HTF Containment Materials (National Renewable Energy Laboratory, 2012), p. 1 (Print).

  2. Ma. Zhiwen, and C. Turchi, in Proceeds of the Supercirtical CO 2 Power Cycle Symposium, Boulder, CO, 2011.

  3. B. Pint, in Proceeds of the supercritical CO 2 power cycle symposium, (San Antonio, Texas, 2016).

  4. Y. Kato, T. Nitawaki and Y. Muto, Nuclear Engineering and Design 230,195 (2004).

    Article  Google Scholar 

  5. C.H. Oh, T. Lillo, W. Windes, “Development of a Supercritical Carbon-Dioxide Brayton Cycle:Improving VHTR Efficiency and Testing Materials Compatibility”, (INL/EXT-06-01271, 2006).

  6. D. R. Holmes, R. B. Hill and L. M. Wyatt, Corrosion of Steels in CO 2 , British Nuclear Energy Society, (Reading University, Reading, 1974).

    Google Scholar 

  7. J.J.Jelinek, Corrosion behavior of alloys in high temperature high pressure supercritical carbon dioxide, (master thesis, UW Madison, 2012).

  8. L. Tan, M. Anderson, D. Taylor and T. R. Allen, Corrosion Science 53, 3273 (2011).

    Article  Google Scholar 

  9. G. Cao, V. Firouzdor, K. Sridharan, M. Anderson and T. R. Allen, Corrosion of Austenitic Alloys in High Temperature Supercritical Carbon Dioxide, Corrosion Science, (Volume 60, July 2012), p. 246.

  10. V. Firouzdor, K. Sridharan, G. Cao, M. Anderson and T. R. Allen, Corrosion Science 69, 281 (2013).

    Article  Google Scholar 

  11. J. Mahaffey, in Proceeds of the supercritical CO 2 power cycle symposium, (Pittsburgh, Pennsylvania. 2014).

  12. P. A. Strakey, O. N. Dogan, G. R. Holcomb, G. A. Richards, in Proceeds of the supercritical CO2 power cycle symposium, (Pittsburgh, Pennsylvania. 2014).

  13. H. Saari, C. Parks, R. Petrusenko, B. Maybee, K. Zanganeh, Proceeds of the supercritical CO 2 power cycle symposium, (Pittsburgh, Pennsylvania. 2014).

  14. L. Tan, M. Anderson, D. Taylor and T. R. Allen, Corrosion Science 53, 3273 (2011).

    Article  Google Scholar 

  15. Moore, R., Conboy, T. “Metal Corrosion in a Supercritical Carbon Dioxide—Liquid Sodium Power Cycle,” (Sandia National Laboratory Report 2012 SAND2012-0184).

  16. L. F. He, P. Roman, B. Leng, K. Sridharan, M. Anderson and T. R. Allen, Corrosion Science 82, 67 (2014).

    Article  Google Scholar 

  17. “The Effect of Temperature on the B. A. Pint, J. R. Keiser, sCO2 Compatibility of Conventional Structural Alloys,” in Proceedings of the 4th International Symposium on Supercritical CO 2 Power Cycles, (Pittsburgh, PA, September 2014) p. 61.

  18. J. Mahaffey., D. Adam,“Effect of Oxygen Impurity on Corrosion in Supercritical CO2 Environments.” in Proceedings of the 5th international Symposium on Supercritical CO 2 Power Cycles, (San Antonio, Tx, March 2016) p. 114.

  19. R. Fen-Ren Chien, Journal of Material Science 27, 1514 (1992).

    Article  Google Scholar 

  20. G. H. Meier, K. Jung, N. Mu, N. M. Yanar, F. S. Pettit, J. P. Abellán, T. Olszewski, L. N. Hierro, W. J. Quadakkers and G. R. Holcomb, Oxidation of Metals 74, 319 (2010).

    Article  Google Scholar 

  21. S. Bouhieda, F. Rouillard, V. Barnier and K. Wolski, Oxidation of Metals 80, 493 (2013).

    Article  Google Scholar 

  22. B. Lafuente, R. T. Downs, H. Yang and N. Stone, The power of databases: the RRUFF project. in Highlights in Mineralogical Crystallography, eds. T. Armbruster and R. M. Danisi (Walter de Gruyter, Berlin, 2015), p. 1.

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is supported by NREL Subcontract No. AXL-3-23308-01, under DOE Prime Contract No. DE-AC36-08GO28308 to Alliance for Sustainable Energy, LLC, Management and Operating Contractor for the National Renewable Energy Laboratory and Cooperative Agreement DE-NE0000677 from the U.S. Department of Energy, Idaho Operations and from the Department of Energy Nuclear Energy University Program (NEUP) Grant No. DE-NE0000677.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Mahaffey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahaffey, J., Adam, D., Brittan, A. et al. Corrosion of Alloy Haynes 230 in High Temperature Supercritical Carbon Dioxide with Oxygen Impurity Additions. Oxid Met 86, 567–580 (2016). https://doi.org/10.1007/s11085-016-9654-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-016-9654-8

Keywords

Navigation