Skip to main content
Log in

Influence of Mechanical Surface Treatment on High-Temperature Oxidation of Pure Titanium

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The excellent combination of light-weight and good mechanical properties makes titanium alloys attractive for compressor section components in gas turbine engines (temperature between 250 and 600 °C). However, above 600 °C, the formation of an unprotective oxide layer facilitates the oxygen diffusion into the alloy. In this experimental study, pure titanium was treated with mechanical surface treatment to promote better protection against oxidation at high temperature. Shot-peened and laser-shock peened specimens were compared to untreated samples in terms of oxidation behavior at high temperature. We used thermal gravimetric analysis to oxidize the samples at 700 °C for 100 h. Subsequently, XRD, optical microscopy, SEM/EDS, NRA, micro-Raman spectroscopy, and micro-hardness were used to characterize the oxide scale and the alpha-case layer formed during the high-temperature exposure. The shot-peened samples oxidized less (−45%) than the untreated and laser-shock peened samples. This behavior was attributed to the formation of a continuous nitride layer between oxide and metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. C. William and E. A. Starke, Acta Materialia 51, 5775 (2003).

    Article  Google Scholar 

  2. J. Stringer, Acta Metallurgica 8, 758 (1960).

    Article  Google Scholar 

  3. A. M. Chaze and C. Coddet, Journal of the Less Common Metals 124, 73 (1986).

    Article  Google Scholar 

  4. C. Coddet, A. M. Chaze, and G. Beranger, Journal of Materials Science 22, 2969 (1987).

    Article  Google Scholar 

  5. D. K. Das and S. P. Trivedi, Material Science and Engineering 367, 225 (2004).

    Article  Google Scholar 

  6. M. D. Alam and D. K. Das, Surface and Coating Technology 128–129, 89 (2009).

    Google Scholar 

  7. I. Gurappa, D. Manova, J. W. Gerlach, S. Mandl, and B. Raushenbach, Surface and Coating Technology 201, 3536 (2006).

    Article  Google Scholar 

  8. A. K. Lal, S. K. Sinha, P. K. Bahrai, K. G. M. Nair, S. Kavalathy, and D. C. Kothari, Surface and Coating Technology 203, 2605 (2009).

    Article  Google Scholar 

  9. A. Ebach-Stahl, C. Eilers, and N. Laska, Surface and Coating Technology 223, 24 (2013).

    Article  Google Scholar 

  10. D. Wei, P. Zhang, Z. Yao, and J. Zhou, Surface and Coating Technology 204, 2343 (2012).

    Google Scholar 

  11. M. C. Marco de Lucas, L. Lavisse, and G. Pillon, Tribology International 41, 985 (2008).

    Article  Google Scholar 

  12. V. Optasanu, P. Jacquinot, and T. Montesin, Advanced Materials Research 996, 912 (2014).

    Article  Google Scholar 

  13. L. Raceanu, V. Optasanu, T. Montesin, and M. François, Oxidation of Metals 79, 135 (2013).

    Article  Google Scholar 

  14. M. Micoulaut, S. Mechkov, D. Retraint, P. Viot, and M. François, Granular Matter 9, 25 (2005).

    Article  Google Scholar 

  15. K. Y. Zhu, A. Vassel, F. Brisset, K. Ju, and J. Lu, Acta Materalia 52, 4101 (2004).

    Article  Google Scholar 

  16. P. Peyre, L. Berthe, V. Vignal, I. Popa, and T. Baudin, Journal of Physics 45, 335304 (2012).

    Google Scholar 

  17. P. Peyre, C. Carboni, P. Forget, G. Beranger, C. Lemaître, and D. Stuart, Journal of Material Science 42, 6866 (2007).

    Article  Google Scholar 

  18. H. Khodja, E. Berthoumieux, L. Daudin, and J. P. Gallien, Nuclear Instruments and Methods in Physics Research Section B 181, 83 (2001).

    Article  Google Scholar 

  19. A. Gurbich and S. Molodtsov, Nuclear Instruments and Methods in Physics Research Section B 266, 1206 (2008).

    Article  Google Scholar 

  20. L. Lavisse, P. Berger, M. Cirisan, J. M. Jouvard, S. Bourgeois and M. C. Marco de Lucas, Journal of Physics D 42, 245303 (2009).

    Article  Google Scholar 

  21. J. M. Chappé, M. C. Marco de Lucas, L. Cunha, C. Moura, J. F. Pierson, L. Imhoff, O. Heintz, V. Potin, S. Bourgeois, and F. Vaz, Thin Solid Films 520, 144 (2011).

    Article  Google Scholar 

  22. H. E. Evans, International Materials Reviews 40, 1 (1995).

    Article  Google Scholar 

  23. M. Boulova and G. Lucazeau, Journal of Solid State Chemistry 167, 425 (2002).

    Article  Google Scholar 

  24. W. Jia, Q. Hong, H. Zhao, L. Li, and D. Han, Material Science and Engineering 606, 354 (2014).

    Article  Google Scholar 

  25. Z. Cao, H. Xu, S. Zou, and Z. Che, Chinese Journal of Aeronautics 25, 650 (2012).

    Article  Google Scholar 

  26. X. C. Zhang, Y. K. Zhang, J. Z. Lu, F. Z. Xuan, Z. D. Wang, and S. T. Tu, Materials Science and Engineering 527, 3411 (2010).

    Article  Google Scholar 

  27. C. Cellard, D. Retraint, M. François, E. Rouhaud, and D. Le Saunier, Materials Science and Engineering 532, 362 (2012).

    Article  Google Scholar 

  28. S. B. Fard and M. Guagliano, Frattura e Integrita Strutturale 7, 3 (2009).

    Google Scholar 

  29. M. Thomas and M. Jackson, Scripta Materialia 66, 1065 (2012).

    Article  Google Scholar 

  30. E. M. Gutman, Mechanochemistry of Solid Surface (World Scientific, Singapore, 1994).

    Book  Google Scholar 

  31. M. Wen, C. Wen, P. Hodgson, and Y. Li, Colloids and Surfaces B 116, 658 (2014).

    Article  Google Scholar 

  32. M. Thomas, T. Lindley, D. Rugg, and M. Jackson, Acta Materialia 60, 5040 (2012).

    Article  Google Scholar 

  33. A. Antilla, J. Räisänen, and J. Keinonen, Applied Physics Letters 42, 498 (1983).

    Article  Google Scholar 

  34. F. Torrent, L. Lavisse, P. Berger, G. Pillon, C. Lopes, F. Vaz, and M. C. Marco de Lucas, Surface and Coatings Technology 255, 146 (2014).

    Article  Google Scholar 

  35. F. Borgioli, E. Galvanetto, F. Iozelli, and G. Pradelli, Materials Letters 59, 2159 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virgil Optasanu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanjer, A., Optasanu, V., Lavisse, L. et al. Influence of Mechanical Surface Treatment on High-Temperature Oxidation of Pure Titanium. Oxid Met 88, 383–395 (2017). https://doi.org/10.1007/s11085-016-9700-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-016-9700-6

Keywords

Navigation