Skip to main content

Advertisement

Log in

Corrosion Monitoring Assessment on Lithium Nitrate Molten Salts as Thermal Energy Storage Material Applied to CSP Plants

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The development of the new generation of concentrated solar power (CSP) plants requires improvements in the thermal energy storage systems, and corrosion produced is one of the main challenges to control since this can affect the costs of the electrical generation. Electrochemical impedance spectroscopy (EIS) has been applied in this research as a corrosion monitoring technique, comparing the results with conventional gravimetric corrosion tests. Gravimetric and electrochemical tests were conducted using AISI 304 stainless steel immersed in a ternary salt mixture composed of 57 wt% KNO3 + 13 wt% NaNO3 + 30 wt% LiNO3 at 550 °C for 1000 h. The corrosion rate obtained using gravimetric and electrochemical tests was 7.8 μm/year and 5.7 μm/year, respectively. According to the results obtained in this research, EIS techniques could be a feasible option to control corrosion in CSP plants and reduce operational risks during the molten salt thermal-electricity conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Adapted from [26])

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Medrano, A. Gil, I. Martorell, X. Potau and L. F. Cabeza, Renewable and Sustainable Energy Reviews 14, 2010 (56–72).

    Article  Google Scholar 

  2. D. Barlev, R. Vidu and P. Stroeve, Solar Energy Materials and Solar Cells 95, 2011 (2703–2725).

    Article  CAS  Google Scholar 

  3. Á. G. Fernández, M. Fullana, L. Calabrese, E. Proverbio, L. F. Cabeza, Corrosion Characterization in Components for Thermal Energy Storage Applications (2019), pp. 139–169. https://doi.org/10.1007/978-3-319-96640-3_10.

  4. S. A. Kalogirou, Solar thermal collectors and applications. Progress in Energy and Combustion Science (2004), p, 30.

  5. M. T. Islam, N. Huda, A. B. Abdullah and R. Saidur, Renewable and Sustainable Energy Reviews 91, 2018 (987–1018).

    Article  Google Scholar 

  6. G. McConohy and A. Kruizenga, Solar Energy 103, 2014 (242–252).

    Article  CAS  Google Scholar 

  7. A. G. Fernández, M. I. Lasanta and F. J. Pérez, Oxidation of Metals 78, 2012 (329–348).

    Article  Google Scholar 

  8. E. Brussels, O. Ce, Concentrating Solar Power: Its Potential Contribution to a Sustainable Energy Future ea sac Building Science into EU Policy (2011).

  9. A. Gil, M. Medrano, I. Martorell, et al., Renewable and Sustainable Energy Reviews 14, 2010 (31–55).

    Article  CAS  Google Scholar 

  10. F. Cavallaro, E. K. Zavadskas and D. Streimikiene, Journal of Cleaner Production 179, 2018 (407–416).

    Article  Google Scholar 

  11. K. Kaygusuz, Renewable and Sustainable Energy Reviews. 15, 2011 (808–814).

    Article  Google Scholar 

  12. A. Skumanich, Renewable Energy Focus 11, 2010 (40–43).

    Article  Google Scholar 

  13. S. Kalaiselvam and R. Parameshwaran, Thermal Energy Storage Technologies for Sustainability: Systems Design, Assessment and Applications. Thermal Energy Storage Technologies for Sustainability: Systems Design, Assessment and Applications, (Elsevier, Amsterdam, 2014). https://doi.org/10.1016/c2013-0-09744-7.

    Book  Google Scholar 

  14. M. Henríquez, L. Guerreiro, Á. G. Fernández and E. Fuentealba, Renewable Energy 149, 2019 (940–950).

    Article  Google Scholar 

  15. R. W. Bradshaw, J. G. Cordaro, N. P. Siegel, in Proceedings of the ASME 3rd International Conference on Energy Sustainability 2009, ES2009. American Society of Mechanical Engineers Digital Collection, vol. 2 (2009), pp. 615–624.

  16. W. J. Cheng, D. J. Chen and C. J. Wang, Solar Energy Materials and Solar Cells 132, 2015 (563–569).

    Article  CAS  Google Scholar 

  17. R. I. Olivares and W. Edwards, Thermochimica Acta 560, 2013 (34–42).

    Article  CAS  Google Scholar 

  18. M. M. Bin, G. Brooks, R. M. Akbar, in Minerals, Metals and Materials Series (Springer International Publishing, 2017), pp. 531–539. https://doi.org/10.1007/978-3-319-51091-0_52.

  19. G. Gao, F. H. Stott, J. L. Dawson and D. M. Farrell, Oxidation of Metals 33, 1990 (79–94).

    Article  CAS  Google Scholar 

  20. A. G. Fernández and L. F. Cabeza, Solar Energy Materials and Solar Cells 192, 2019 (179–187).

    Article  Google Scholar 

  21. J. R. Macdonald, Electrochimica Acta 35, 1990 (1483–1492).

    Article  CAS  Google Scholar 

  22. D. D. Macdonald, Electrochimica Acta 51, 2006 (1376–1388).

    Article  CAS  Google Scholar 

  23. G. W. Walter, Corrosion Science 26, 1986 (681–703).

    Article  CAS  Google Scholar 

  24. A. Kisza, Electrochimica Acta 51, 2006 (2315–2321).

    Article  CAS  Google Scholar 

  25. M. E. Orazem and B. Tribollet, Electrochimica Acta 53, 2008 (7360–7366).

    Article  CAS  Google Scholar 

  26. C. L. Zeng, W. Wang and W. T. Wu, Corrosion Science 43, 2001 (787–801).

    Article  CAS  Google Scholar 

  27. A. G. Fernández, A. Rey, I. Lasanta, S. Mato, M. P. Brady and F. J. Pérez, Materials and Corrosion 65, 2014 (267–275).

    Article  Google Scholar 

  28. A. G. Fernández and F. J. Pérez, Solar Energy 134, 2016 (468–478).

    Article  Google Scholar 

  29. A. G. Fernández, M. Cortes, E. Fuentealba and F. J. Pérez, Renewable Energy 80, 2015 (177–183).

    Article  Google Scholar 

  30. Bradshaw RW, Goods SH. Corrosion Resistance of Stainless Steels During Thermal Cycling in Alkali Nitrate. Sandia Rep. 2001;1–39.

  31. M. C. Trent, S. H. Goods, R. W. Bradshaw, in AIP Conference Proceedings, vol. 1734 (American Institute of Physics Inc., 2016), p. 160017.

  32. S. H. Goods, R. W. Bradshaw, M. R. Prairie and J. M. Chavez, Corrosion of stainless and carbon steels in molten mixtures of industrial nitrates, (Sandia National Laboratories, Albuquerque, 1994). https://doi.org/10.2172/10141843.

    Book  Google Scholar 

  33. A. Mallco, C. Portillo, M. J. Kogan, F. Galleguillos and A. G. Fernández, Applied Science 10, 2020 (3160).

    Article  CAS  Google Scholar 

  34. M. Walczak, F. Pineda, Á. G. Fernández, C. Mata-Torres and R. A. Escobar, Renewable and Sustainable Energy Reviews 86, 2018 (22–44).

    Article  CAS  Google Scholar 

  35. Á. G. Fernández and L. F. Cabeza, Solar Energy Materials and Solar Cells 194, 2019 (160–165).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support provided by CONICYT/FONDAP 15110019 “Solar Energy Research Center” SERC-Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel G. Fernández.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallco, A., Fernández, A.G. Corrosion Monitoring Assessment on Lithium Nitrate Molten Salts as Thermal Energy Storage Material Applied to CSP Plants. Oxid Met 94, 383–396 (2020). https://doi.org/10.1007/s11085-020-09997-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-020-09997-0

Keywords

Navigation