Skip to main content
Log in

System for In Situ Characterization of Nanoparticles Synthesized in a Thermal Plasma Process

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

We have designed a particle diagnostic system that is able to measure particle size and charge distributions from low stagnation pressure (≥746 Pa) and high temperature (2000–4000 K) environments in near real time. This system utilizes a sampling probe interfaced to an ejector to draw aerosol from the low pressure chamber. Particle size and charge distributions are measured with a scanning mobility particle sizer. A hypersonic impactor is mounted in parallel with the scanning mobility particle sizer to collect particles for off-line microscopic analysis. This diagnostic system has been used to measure size and charge distributions of nanoparticles (Si, Ti, Si–Ti–N, etc.) synthesized with our thermal plasma reactor. We found that the mean particle size increases with operating pressure and reactant flow rates. We also found that most particles from our reactor are neutral for particles smaller than 20 nm, and that the numbers of positively and negatively charged particles are approximately equal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S. Selwyn (1993) Jpn. J. Appl. Phys. Part 1 32 IssueID6B 3068 Occurrence Handle10.1143/JJAP.32.3068

    Article  Google Scholar 

  2. Y. Watanabe M. Shiratani (1993) Jpn. J. Appl. Phys. Part 1 32 IssueID6 3074 Occurrence Handle10.1143/JJAP.32.3074

    Article  Google Scholar 

  3. L. Boufendi, W. Stoffels, and E. Stoffels, in: Dusty Plasmas: Physics, Chemistry and Technological Impacts in Plasma Processing (A. Bouchoule, ed.). John Wiley & Sons Ltd, New York 1999.

  4. B. R. Forsyth B. Y. H. Liu (2002) Aerosol. Sci. Technol 36 IssueID5 515 Occurrence Handle10.1080/02786820252883757

    Article  Google Scholar 

  5. B. R. Forsyth B. Y. H. Liu (2002) Aerosol. Sci. Technol 36 IssueID5 526 Occurrence Handle10.1080/02786820252883766

    Article  Google Scholar 

  6. T. Seto T. Nakamoto K. Okada M. Adachi Y. Kuga K. Takeuchi (1997) J. Aerosol. Sci 28 IssueID2 193 Occurrence Handle10.1016/S0021-8502(96)00071-7

    Article  Google Scholar 

  7. K. S. Seol Y. Tsutatani R. P. Camata J. Yabumoto S. Isornura Y. Okada K. Okuyama K. Takeuchi (2000) J. Aerosol. Sci 31 IssueID12 1389 Occurrence Handle10.1016/S0021-8502(00)00037-9

    Article  Google Scholar 

  8. K. S. Seol Y. Tsutatani T. Fujimoto Y. Okada K. Takeuchi H. Nagamoto (2001) J. Vac. Sci. Technol. B 19 IssueID5 1998 Occurrence Handle10.1116/1.1404979

    Article  Google Scholar 

  9. T. Makino N. Suzuki Y. Yamada T. Yoshida T. Seto N. Aya (1999) Appl. Phys. A 69 IssueID[Suppl.] S243 Occurrence Handle10.1007/s003390051392

    Article  Google Scholar 

  10. P. J. Ziemann P. Liu D. B. Kittelson P. H. McMurry (1995) J. Aerosol. Sci 26 IssueID5 745 Occurrence Handle10.1016/0021-8502(95)00009-2

    Article  Google Scholar 

  11. P. J. Ziemann, P. Liu, S. Nijhawan, D. B. Kittelson, P. H. McMurry, and S. A. Campbell, 41st Annual Technical Meeting of the Institute of Environmental Sciences, Anaheim, CA, 1995n.

  12. S. Nijhawan P. H. McMurry M. T. Swihart S.-M. Suh S. L. Girshick S. A. Campbell J. E. Brockmann (2003) J. Aerosol. Sci 34 691 Occurrence Handle10.1016/S0021-8502(03)00029-6

    Article  Google Scholar 

  13. S. C. Wang R. C. Flagan (1990) Aerosol. Sci. Technol 13 230

    Google Scholar 

  14. N. P. Rao S. L. Girshick J. V. R. Heberlein P. H. McMurry S. Jones D. Hansen B. Micheel (1995) Plasma Chem. Plasma Process 15 IssueID4 581 Occurrence Handle10.1007/BF01447062

    Article  Google Scholar 

  15. N. P. Rao N. Tymiak J. Blum A. Neumann H. J. Lee S. L. Girshick P. H. McMurry J. V. R. Heberlein (1998) J. Aerosol. Sci 29 IssueID5/6 707 Occurrence Handle10.1016/S0021-8502(97)10015-5

    Article  Google Scholar 

  16. E. O. Knutson K. T. Whitby (1975) J. Aerosol. Sci 6 443 Occurrence Handle10.1016/0021-8502(75)90060-9

    Article  Google Scholar 

  17. M. R. Stolzenburg P. H. McMurry (1991) Aerosol Sci. Technology 14 48

    Google Scholar 

  18. D.-R. Chen D. Y. H. Pui D. Hummes H. Fissan F. Quant G. Sem (1998) J. Aerosol Sci 29 IssueID5/6 497 Occurrence Handle10.1016/S0021-8502(97)10018-0

    Article  Google Scholar 

  19. J. Fernandezdela Mora S. V. Hering N. P. Rao P. H. McMurry (1990) J. Aerosol. Sci 21 IssueID2 169 Occurrence Handle10.1016/0021-8502(90)90002-F

    Article  Google Scholar 

  20. F. Di Fonzo A. Gidwani M. H. Fan A. Neumann D. I. Iordanoglou J. V. R. Heberlein P. H. McMurry S. L. Girshick N. Tymiak W. W. Gerberich N. P. Rao (2000) Appl. Phys. Lett 77 IssueID6 910 Occurrence Handle10.1063/1.1306638

    Article  Google Scholar 

  21. S. L. Girshick, J. V. R. Heberlein, P. H. McMurry, W. W. Gerberich, D. I. Iordanoglou, N. P. Rao, A. Gidwani, N. Tymiak, F. D. Fonzo, M. H. Fan, and D. Neumann, in: Innovative Processing of Films and Nanocrystalline Powders (K.-L. Choy, ed.) Imperial College Press, London, 2000.

  22. A. Gidwani, Ph.D. Thesis, Department of Mechanical Engineering, University of Minnesota, Minneapolis, 55455,(2003).

  23. P. Liu P. J. Ziemann D. B. Kittelson P. H. McMurry (1995a) Aerosol Sci. Technol 22 IssueID3 293

    Google Scholar 

  24. P. Liu P. J. Ziemann D. B. Kittelson P. H. McMurry (1995b) Aerosol Sci. Technol 22 IssueID3 314

    Google Scholar 

  25. N. A. Fuchs (1963) Geofisica pura e applicata 56 185 Occurrence Handle10.1007/BF01993343

    Article  Google Scholar 

  26. B. Y. H. Liu D.Y. H. Pui (1974) J. Aerosol Sci 5 465 Occurrence Handle10.1016/0021-8502(74)90086-X

    Article  Google Scholar 

  27. W. C. Hinds (1998) Aerosol Technology, Properties, Behavior, and Measurement of Airborne Particles John Wiley & Sons Inc New York

    Google Scholar 

  28. A. Reineking J. Porstendorfer (1986) Aerosol Sci. Technol 5 483

    Google Scholar 

  29. A. Wiedensohler H.J. Fissan (1991) Aerosol Sci Technol 14 358

    Google Scholar 

  30. B. Y. H. Liu and D. Y. H. Pui, J. Aerosol Sci6, 249 (1975).

  31. N. P. Rao B. Micheel D. Hansen C. Fandrey M. Bench S. L. Girshick J. V. R. Heberlein P. H. McMurry (1995) J Mater Res 10 IssueID8 2073

    Google Scholar 

  32. 32. S. L. Girshick and C. P. Chiu, Plasma Chem. Plasma Process. 9(3) (1989).

  33. J. Goree (1994) ArticleTitlePlasma Sources Sci Technol 3 400

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. H. McMurry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Hafiz, J., Mukherjee, R. et al. System for In Situ Characterization of Nanoparticles Synthesized in a Thermal Plasma Process. Plasma Chem Plasma Process 25, 439–453 (2005). https://doi.org/10.1007/s11090-005-4991-4

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-005-4991-4

Keywords

Navigation