Skip to main content
Log in

Preparation and Application of Ca0.8 Sr0.2 TiO3 for Plasma Activation of CO2

  • Original Article
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Despite a large interest in plasma-assisted catalytic technology (PACT), very little has been reported about the catalytic effects of different dielectric barriers on a dielectric barrier discharge (DBD) reaction. In the present study, Ca0.8Sr0.2TiO3, that possesses a high permittivity, was prepared by liquid phase sintering and used as a dielectric barrier in a DBD reactor to break CO2. The mechanical and dielectric properties of Ca0.8Sr0.2TiO3 were greatly enhanced by adding 0.5 wt.% Li2Si2O5. A DBD plasma was successfully generated by using this Ca0.8Sr0.2TiO3 as a dielectric barrier and 18.8% CO2 conversion was achieved with the residence time of 0.17 s at the frequency of 8 kHz, which was much higher than with those using an alumina or a silica glass barrier. It was found that the plasma power increased with the increasing of the permittivity, and finally very dense and strong microdischarges were initiated to decompose CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eliasson B, Kogelschatz U (1991). IEEE Trans Plasma Sci 19:1063

    Article  ADS  Google Scholar 

  2. Eliasson B, Hirth M, Kogelschatz U (1987). J Phys D: Appl Phys 20:1421

    Article  ADS  Google Scholar 

  3. Sun W, Pashaie B, Dhali SK (1996). J Appl Phys 79:3438

    Article  ADS  Google Scholar 

  4. Chang MB, Balbach JH, Rood MJ, Kushner MJ (1991). J Appl Phys 69:4409

    Article  ADS  Google Scholar 

  5. Zheng G, Jiang J, Wu Y, Zhang R, Hou H (2003). Plasma Chem Plasma Process 23:59

    Article  Google Scholar 

  6. Suib SL, Brock SL, Marquez M, Luo J, Matsumoto H, Hayashi Y (1998). J Phys Chem B 102:9661

    Article  Google Scholar 

  7. US patent 5 474 747 (1995)

  8. Ohgaki K, Nakano S, Matsubara T, Yamanaka S (1997). J Chem Eng Jpn 30:310

    Article  Google Scholar 

  9. Brock SL, Marquez M, Suib SL, Hayashi Y, Matsumoto H (1998). J Catal 180:225

    Article  Google Scholar 

  10. Wang J, Xia G, Huang A, Suib SL, Hayashi Y, Matsumoto H (1999). J Catal 185:152

    Article  Google Scholar 

  11. Kraus M, Eliasson B, Kogelschatz U, Wokaun A (2001). Phys Chem Chem Phys 3:294

    Article  Google Scholar 

  12. Kraus M, Egli W, Haffner K, Eliasson B, Kogelschatz U, Wokaun A (2002). Phys Chem Chem Phys 4:668

    Article  Google Scholar 

  13. Matsumoto H, Tanabe S, Okitsu K, Hayashi Y, Suib SL (1999). Bull Chem Soc Jpn 72:2567

    Article  Google Scholar 

  14. Schmidt-Szalowski K, Borucka A (1989). Plasma Chem Plasma Process 9:235

    Article  Google Scholar 

  15. Drimal J, Gibalov VI, Samoylovich VG (1987). Czech J Phys B 37:1248

    Article  ADS  Google Scholar 

  16. Drimal J, Kozlov KV, Gibalov VI, Samoylovich VG (1988). Czech J Phys B 38:159

    Article  ADS  Google Scholar 

  17. Gibalov VI, Drimal J, Wronski M, Samoilovich VG (1991). Contrib Plasma Phys 31:89

    Article  Google Scholar 

  18. Kogelschatz U, Eliasson B, Egli W (1997). J Phys IV, France 7:C4–47

    Article  Google Scholar 

  19. Ball CJ, Begg BD, Cookson DJ, Thorogood GJ, Vance ER (1998). J Solid State Chem 139:238

    Article  ADS  Google Scholar 

  20. Ceh M, Kolar D, Golic L (1987). J Solid State Chem 68:68

    Article  ADS  Google Scholar 

  21. Qin S, Becerro AI, Seifert F, Gottsmann J, Jiang J (2000). J Mater Chem 10:1609

    Article  Google Scholar 

  22. Howard CJ, Withers RL, Kennedy BJ (2001). J Solid State Chem 160:8

    Article  ADS  Google Scholar 

  23. Yamanaka T, Hirai N, Komatsu Y (2002). Am Mineral 87:1183

    Google Scholar 

  24. Purwasasmita BS, Hoshi E, Kimura T (2001). J Ceram Soc Jpn 109:191

    Google Scholar 

  25. Kogelschatz U, Eliasson B, Egli W (1999). Pure Appl Chem 71:1819

    Article  Google Scholar 

  26. Kogelschatz U (2003). Plasma Chem Plasma Process 23:1

    Article  Google Scholar 

  27. Kogelschatz U, Salge J (2001). In: Hippler R, Pfau S, Schmidt M, Schoenbach KH (eds.) Low temperature plasma physics, Wiley-VCH Press, Berlin, pp 331–357

  28. Xu X (2001). Thin Solid Films 390:237

    Article  Google Scholar 

  29. Kappes T, Schiene W, Hammer T (2002). Proceedings 8th intern symposium on high pressure low temp. plasma chem., Hakone, pp 196–200

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruixing Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, R., Tang, Q., Yin, S. et al. Preparation and Application of Ca0.8 Sr0.2 TiO3 for Plasma Activation of CO2 . Plasma Chem Plasma Process 26, 267–276 (2006). https://doi.org/10.1007/s11090-006-9002-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-006-9002-x

Keywords

Navigation