Skip to main content
Log in

Degradation of Methylene Blue by RF Plasma in Water

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Radio frequency (RF) plasma in water was used for the degradation of methylene blue. The fraction of decomposition of methylene blue and the intensity of the spectral line from OH radical increased with RF power. RF plasma in water also produced hydrogen peroxide. The density of hydrogen peroxide increased with RF power and exposure time. When pure water (300 mL) is exposed to plasma at 310 W for 15 min, density of hydrogen peroxide reaches to 120 mg/L. Methylene blue after exposed to plasma degraded gradually for three weeks. This degradation may be due to chemical processes via hydrogen peroxide and tungsten. The comparison between the experimental and calculated spectral lines of OH radical (A–X) shows that the temperature of the radical is around 3,500 K. Electron density is evaluated to be ≃3.5 × 1020 m−3 from the stark broadening of the Hβ line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Clements JS, Sato M, Davis RH (1987) IEEE Trans Ind Appl 23:224

    Article  Google Scholar 

  2. Sharma AK, Locke BR, Arce P, Finney WC (1993) Hazard Waste Hazard Mater 10:209

    Google Scholar 

  3. Joshi AA, Lock BR, Arce P, Finney WC (1995) J Hazard Matter 41:3

    Article  Google Scholar 

  4. Grymonpre DR, Finney WC, Locke BR (1999) Chem Eng Sci 54:3095

    Article  Google Scholar 

  5. Sahni M, Finnery WC, Locke BR (2005) J Adv Oxid Technol 8:105

    Google Scholar 

  6. Grymonpre DR, Sharma AK, Finney WC, Locke BR (2001) Chem Eng J 82:189

    Article  Google Scholar 

  7. Inoue M, Okada F, Sakurai A, Sakakibara M (2006) Ultrasonics Sonochem 13:313

    Google Scholar 

  8. Pawłat J, Ihara S, Yamabe C, Pollo I (2005) Plasma Process Polym 2:218

    Article  Google Scholar 

  9. Aoki H, Kitano K, Hamaguchi S (2007) Proceedings of 18th international symposium on Plasma Chemistry, Kyoto, Japan: 00339

  10. Ishijima T, Hotta H, Sugai H, Sato M (2007) Appl Phys Lett 91:121501

    Article  ADS  Google Scholar 

  11. Maehara T, Toyota H, Kuramoto M et al. (2006) Jpn J Appl Phys 45:8864

    Article  ADS  Google Scholar 

  12. Nomura S, Toyota H (2003) Appl Phys Lett 83:4503

    Article  ADS  Google Scholar 

  13. Nomura S, Toyota H, Mukasa S, Yamashita H, Maehara T, Kuramoto M (2006) Appl Phys Lett 88:211503

    Article  ADS  Google Scholar 

  14. Takahashi Y, Toyota H, Nomura S, Mukasa S (2007) Proceedings of 18th international symposium on plasma chemistry, Kyoto, Japan: 00133

  15. Takai O (2007) Proceedings of 18th international symposium on plasma chemistry, Kyoto, Japan: 00254

  16. Levin DA, Laux CO, Kruger CH (1999) J Quant Spectrosc Radiat Transf 61:377

    Article  ADS  Google Scholar 

  17. Mašláni A, Sember V (2004) Proceedings on fourth international workshop and school towards fusion energy-plasma physics, Diagnostics, Applications Kudowa Zdroj, Poland: 669

  18. Luque J, Crosley DR, (1999) “LIFBASE” Database and Spectral Simulation Program (Version 1.5), SRI International Report Mp 99-009

  19. Laux O, Spence TG, Kruger CH, Zare RN (2003) Plasma Source Sci Technol 12:125

    Article  ADS  Google Scholar 

  20. Sember V, Gravelle DV, Boulos MI (2002) J Phys D: Appl Phys 35:1350

    Article  ADS  Google Scholar 

  21. Stehlé C, Hutcheon R (1999) Astron Astrophys Suppl Ser 140:93

    Article  ADS  Google Scholar 

  22. Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Spectrochimica Acta Part B 61:2

    Article  ADS  Google Scholar 

  23. Griem HR (1964) Plasma spectroscopy. MacGrow-Hill, New York

    Google Scholar 

  24. Chase MW Jr, Davies CA, Downey JR Jr, Frurip DJ, McDonald RA, Syverud AN (1985) JANAF thermochemical tables, 3rd edn. American Chemical Society and the American institute of Physics for the National Bureau of Standards, New York

    Google Scholar 

  25. Seidell A, Linke WF (1965) Solubilities of inorganic and metal organic compounds, 4th edn. American Chemical Society, Washinton

    Google Scholar 

Download references

Acknowledgements

The present work was partially supported by Grants-in Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (No. 17654118) (T. Maehara) and (No. 17560636) (H. Toyota). The authors thank Mr. H. Okumura for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Maehara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maehara, T., Miyamoto, I., Kurokawa, K. et al. Degradation of Methylene Blue by RF Plasma in Water. Plasma Chem Plasma Process 28, 467–482 (2008). https://doi.org/10.1007/s11090-008-9142-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-008-9142-2

Keywords

Navigation