Skip to main content
Log in

Silver Loading on DBD Plasma-Modified Woven PET Surface for Antimicrobial Property Improvement

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this work, the hydrophilic improvement of a woven PET surface was accomplished by a plasma technique. The woven PET surface was plasma-treated by dielectric barrier discharge (DBD) under various operating conditions (electrode gap distance, plasma treatment time, input voltage, and input frequency) and various gaseous environments (air, O2, N2, and Ar) in order to improve its hydrophilicity. It was experimentally found that a decrease in electrode gap distance and an increase in input voltage increased the electric field strength, leading to higher hydrophilicity of the PET surface characterized by wickability and contact angle measurements. In comparisons among the studied environmental gases, air gave the highest hydrophilicity, being comparable to O2, while Ar and N2 gave lower hydrophilicity of the woven PET surface. The optimum conditions for a maximum hydrophilicity of the PET surface were an electrode gap distance of 4 mm, a plasma treatment time of 10 s, an output voltage of 15 kV, and a frequency of 350 Hz under air environment. After the plasma treatment under the obtained optimum conditions, the woven PET was loaded with Ag particles using a AgNO3 aqueous solution in order to obtain the antimicrobial property. The plasma-treated woven PET loaded with Ag particles exhibited good antimicrobial activity against both E. coli (gram-negative bacteria) and S. aureus (gram-positive bacteria).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wypych J (1988) Polymer modified textile materials. Wiley, New York

    Google Scholar 

  2. Chan CM (1994) Polymer surface modification and characterization. Hanser, New York

    Google Scholar 

  3. Ko TM, Cooper SL (1994) Frontiers of polymers and advanced materials. Plenum Press, New York

    Google Scholar 

  4. Strobel M, Lyons CS, Mittal KL (1994) Plasma surface modification of polymers: relevance to adhesion. VSP, Utrecht

    Google Scholar 

  5. Brooks D, Giles GA (2002) PET packaging technology. Sheffield Academic, Sheffield

    Google Scholar 

  6. Scheirs J, Long TE (2003) Modern polyesters: chemistry and technology of polyesters and copolyesters. Wiley, New York

    Google Scholar 

  7. Dai JH, Bruening ML (2002) Nano Lett 2:497

    Article  ADS  Google Scholar 

  8. Lee HJ, Yeo SY, Jeong SH (2003) J Mater Sci 28:2199

    Article  Google Scholar 

  9. Ignatova M, Labaye D, Lenoir S, Strivay D, Jerome R, Jerome C (2003) Langmuir 19:2759

    Article  Google Scholar 

  10. Huh MW, Kang IK, Lee DH, Kim WS, Lee DH (2001) J Appl Polym Sci 81:2769

    Article  Google Scholar 

  11. Yang MR, Chen KS, Tsai JCh, Tseng CC, Lin SF (2002) Mater Sci Eng C 20:167

    Article  Google Scholar 

  12. Fu J, Ji J, Yuan W, Shen J (2005) Biomaterials 26:6684

    Article  Google Scholar 

  13. Nakagawa Y, Hayashi H, Tawaratani T, Kourai H, Horie T, Shibasaki I (1984) Appl Environ Microbiol 47:513

    Google Scholar 

  14. Cen L, Neoh KG, Kang ET (2003) Langmuir 19:10295

    Article  Google Scholar 

  15. Charton C, Fahland M (2001) Surf Coat Tech 142–144:175

    Article  Google Scholar 

  16. Shi Z, Neoh KG, Kang ET (2004) Langmuir 20:6847

    Article  Google Scholar 

  17. Wang J, Li J, Ren L, Zhao A, Li P, Leng Y, Sun H, Huang N (2007) Surf Coat Tech 201:6893

    Article  Google Scholar 

  18. Li JX, Wang J, Shen LR, Xu ZJ, Li P, Wan GJ, Huang N (2007) Surf Coat Tech 201:8155

    Article  Google Scholar 

  19. De Geyter N, Morent R, Leys C (2006) Surf Coat Tech 201:2460

    Article  Google Scholar 

  20. Chavadej S, Kiattubolpaiboon W, Rangsunvigit P, Sreethawong T (2007) J Mol Catal A: Chem 263:128

    Article  Google Scholar 

  21. Li Y, Leung P, Yao L, Song QW, Newton E (2006) J Hosp Infect 62:58

    Article  Google Scholar 

  22. Morinaga K, Suzuki M (1962) Bull Chem Soc Jpn 35:204

    Article  Google Scholar 

  23. Kogelschatz U (2003) Plasma Chem Plasma Process 23:1

    Article  Google Scholar 

  24. Fang Z, Qiu Y, Luo Y (2003) Appl Phys 36:2980

    Google Scholar 

  25. Le QT, Pireaux JJ, Verbist JJ (1994) Surf Interface Anal 22:224

    Article  Google Scholar 

  26. Inagaki N, Tasaka S, Narushima K, Kobayashi H (2002) J Appl Polym Sci 85:2845

    Article  Google Scholar 

  27. Park JW, Kang M (2007) Int J Hydrogen Energy 32:4840

    Article  Google Scholar 

  28. Weaver JF, Hoflund GB (1994) J Phys Chem 98:8519

    Article  Google Scholar 

  29. Biniak S, Pakula M, Swiatkowski A (1999) J Appl Electrochem 29:421

    Article  Google Scholar 

  30. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) J Biomed Mater Res 52:662

    Article  Google Scholar 

  31. Cho KH, Park JE, Osaka T, Park SG (2005) Electrochim Acta 51:956

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Thai Negoro Co., Ltd, Thailand; the Sustainable Petroleum and Petrochemicals Research Unit, Center for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University, Thailand; and the Petrochemical and Environmental Catalysis Research Unit under the Ratchadapisek Somphot Endowment Fund, Chulalongkorn University, Thailand. The authors would also like to thank Dr. Hideaki Nagahama, Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials, and Bioengineering, Kansai University, Japan for his assistance in XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ratana Rujiravanit or Thammanoon Sreethawong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onsuratoom, S., Rujiravanit, R., Sreethawong, T. et al. Silver Loading on DBD Plasma-Modified Woven PET Surface for Antimicrobial Property Improvement. Plasma Chem Plasma Process 30, 191–206 (2010). https://doi.org/10.1007/s11090-009-9199-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-009-9199-6

Keywords

Navigation