Skip to main content

Advertisement

Log in

Performance of an Ozone Decomposition Catalyst in Hybrid Plasma Reactors for Volatile Organic Compound Removal

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In order to enhance the energy efficiency of nonthermal plasma methods for volatile organic compound decomposition in a catalyst-hybrid plasma reactor, we used a Cu–Cr catalyst to dissociate ozone into active atomic oxygen species at low temperatures. We investigated the conditions necessary to obtain the synergetic effect in single-stage and two-stage combinations. The ozone decomposition catalyst was not effective for the reaction under plasma discharge in the single-stage combination. In the two-stage combination, the efficiency increased by increasing the amount of catalyst. Although the propensity of catalysts for active oxygen species formation from ozone decomposition is important for optimizing the reaction efficiency, the surface area is even more important. We conclude that ozone decomposition catalysts are more effective in the two-stage combination compared to the single-stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yamamoto T, Mizuno K, Tamori I, Ogata A, Nifuku M, Michalska M, Prieto G (1996) IEEE Trans Ind Appl 32:100–105

    Article  Google Scholar 

  2. Kim HH (2004) Plasma Process Polym 1:91–110

    Article  Google Scholar 

  3. Durme JV, Dewulf J, Leys C, Langenhove HV (2008) Appl Catal B: Environ 78:324–333

    Article  Google Scholar 

  4. Chen HL, Lee HM, Chen SH, Chang MB, Yu SJ, Li SN (2009) Environ Sci Technol 43:2216–2227

    Article  Google Scholar 

  5. Sano T, Negishi N, Sakai E, Matsuzawa S (2006) J Molec Catal A: Chem 245:235–241

    Article  Google Scholar 

  6. Huang HB, Ye DQ, Fu ML, Feng FD (2007) Plasma Chem Plasma Process 27:577–588

    Article  Google Scholar 

  7. Guaitella O, Thevenet F, Puzenat E, Guillard C, Rousseau A (2008) Appl Catal B: Environ 80:296–305

    Article  Google Scholar 

  8. Rousseau A, Meshchanov AV, Roepcke J (2006) Appl Phys Lett 88:021503

    Article  ADS  Google Scholar 

  9. Ogata A, Yamanouchi K, Mizuno K, Kushiyama S, Yamamoto T (1999) Plasma Chem Plasma Process 19:383–394

    Article  Google Scholar 

  10. Ogata A, Ito D, Mizuno K, Kushiyama S, Yamamoto T (2001) IEEE Trans Ind Appl 37:959–964

    Article  Google Scholar 

  11. Oh SM, Kim HH, Einaga H, Ogata A, Futamura S, Park DW (2006) Thin Solid Films 506–507:418–422

    Article  Google Scholar 

  12. Ogata A, Kim HH, Oh SM, Futamura S (2006) Thin Solid Films 506–507:373

    Article  Google Scholar 

  13. Einaga H, Ogata A (2009) J Hazard Mater 164:1236–1241

    Article  Google Scholar 

  14. Gervasini A, Vezzoli GC, Ragaini V (1996) Catal Today 29:449–455

    Article  Google Scholar 

  15. Subrahmanyarn C, Renken A, Kiwi-Minsker L (2007) Plasma Chem Plasma Process 27:13–22

    Article  Google Scholar 

  16. Demidiouk V, Chae JO (2005) IEEE Trans Ind Appl 33:157–161

    ADS  Google Scholar 

  17. Oda T, Yamashita R, Takahashi T, Masuda S (1996) IEEE Trans Ind Appl 32:227–232

    Article  Google Scholar 

  18. Kim HH, Ogata A, Futamura S (2006) IEEE Trans Plasma Sci 34:984–995

    Article  ADS  Google Scholar 

  19. Kim HH, Kobara H, Ogata A, Futamura S (2005) IEEE Trans Ind Appl 41:206–214

    Article  Google Scholar 

  20. Kuroki T, Fujioka T, Okubo M, Yamamoto T (2007) Thin Solid Films 515:4272–4277

    Article  ADS  Google Scholar 

  21. Masuda S, Akutsu K, Kuroda M, Awatsu Y, Shibuya Y (1988) IEEE Trans Ind Appl 24:223–231

    Article  Google Scholar 

  22. Saito K, Ogata A, Kim HH, Futamura S, Aritani H, Einaga H (2008) J Inst Electrostat Jpn 32:1–6

    Google Scholar 

  23. Yagi S, Tanaka M (1979) J Phys D Appl Phys 12:1509–1520

    Article  ADS  Google Scholar 

  24. Radhakrishnan R, Oyama ST, Chen JG, Asakura K (2001) J Phys Chem B 105:4245–4253

    Article  Google Scholar 

  25. Einaga H, Ibusuki T, Futamura S (2001) IEEE Trans Ind Appl 37:1476–1482

    Article  Google Scholar 

  26. Kim HH, Oh SM, Ogata A, Futamura S (2004) Catal Lett 96:189–194

    Article  Google Scholar 

  27. Wallis AE, Whitehead JC, Zhang K (2007) Appl Catal B: Environ 74:111–116

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by an Environmental Technology Development Fund from the Ministry of the Environment, Government of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Ogata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogata, A., Saito, K., Kim, HH. et al. Performance of an Ozone Decomposition Catalyst in Hybrid Plasma Reactors for Volatile Organic Compound Removal. Plasma Chem Plasma Process 30, 33–42 (2010). https://doi.org/10.1007/s11090-009-9206-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-009-9206-y

Keywords

Navigation