Skip to main content
Log in

Plasma Modification of Surface Wettability and Morphology for Optimization of the Interactions Involved in Blood Constituents Spreading on Some Novel Copolyimide Films

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Novel copolyimides (cPIs) based on 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 4,4′-diaminodiphenylmethane (DDM) and 1,6-diaminohexane (DAH) were synthesized. Their surface wettability was improved by plasma enhancement of polar component contribution to surface tension from 10 to 50 %. Interfacial energy reduction up to 2.07–2.95 mN/m was depicted in spreading work values that reveal the manner in which cPIs interact with blood constituents. The results showed that by increasing of the aliphatic DAH content in the polymer chain, the rejection of platelets is higher, prohibiting thrombosis and favoring cohesion with plasma proteins. The different water sorptions of the samples were evaluated by considering their morphologies and chemical affinities to water. When DAH prevails to DDM, water sorption capacity is lowered from 6.36 to 4.96 % db, presumably due to a higher chain packing efficiency. Atomic force microscopy data revealed that surface roughness is <8 nm for all polymers, even after plasma treatment, preventing clot formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ghosh MK, Mittal KL (1996) Polyimides: fundamentals and applications. Marcel Dekker Inc, New York

    Google Scholar 

  2. Kim SI, Ree M, Shin TJ, Jung JC (1999) J Polym Sci Part A 37:2909–2921

    Article  Google Scholar 

  3. Mathews AS, Kim I, Ha C-S (2007) Macromol Res 15:114–128

    Article  Google Scholar 

  4. Richardson RR Jr, Miller JA, Reichert WM (1993) Biomaterials 14:627–635

    Article  Google Scholar 

  5. Stieglitz T, Beutel H, Schuettler M, Meyer JU (2000) Biomed Microdev 2:283–294

    Article  Google Scholar 

  6. Cheung KC, Renaud P, Tanila H, Djupsund K (2007) Biosens Bioelectron 22:1783–1790

    Article  Google Scholar 

  7. Mercanzini A, Cheung K, Buhl DL, Boers M, Maillard A, Colin P, Bensadoun JC, Bertsch A, Renaud P (2008) Sens Actuators A 143:90–96

    Article  Google Scholar 

  8. Myllymaa S, Myllymaa K, Korhonen H, Töyräs J, Jääskeläinen JE, Djupsund K, Tanila H, Lappalainen R (2009) Biosens Bioelectron 24:3067–3072

    Article  Google Scholar 

  9. Charest JL, Bryant LE, Garcia AJ, King WP (2004) Biomaterials 25:4767–4775

    Article  Google Scholar 

  10. Nagaoka S, Ashiba K, Kawakami H (2002) Artif Org 26:670–675

    Article  Google Scholar 

  11. Hasegawa M, Horie K (2001) Prog Polym Sci 26:259–335

    Article  Google Scholar 

  12. Ruckenstein E, Gourisankar SV (1986) Biomaterials 7:403–422

    Article  Google Scholar 

  13. Fang X-Z, Li Q-X, Wang Z, Yang Z-H, Gao L-X, Ding M-X (2004) J Polym Sci A 42:2130–2144

    Article  Google Scholar 

  14. Bowen RL (1987) Simplified method for obtained strong adhesive bonding of composites to dentin, enamel and other substances, US Patent no. 4,659

  15. Nguyen TT (1994) Acidic polysaccharides crosslinked with polycarboxylic acids and their uses, US Patent no. 08/362,689

  16. Yang GH, Kang ET, Neoh KG, Zhang Y, Tan KL (2001) Coll Polym Sci 279:745–753

    Article  Google Scholar 

  17. Cui N, Brown MD (2002) Appl Surf Sci 189:31–38

    Article  ADS  Google Scholar 

  18. Suzer S, Argun A, Vatansever O, Oral O (1999) J Appl Polym Sci 74:1846–1850

    Article  Google Scholar 

  19. Hiraoka H, Lasare S (1990) Appl Surf Sci 46:264–271

    Article  ADS  Google Scholar 

  20. Clarke S, Davies MC, Roberts CJ, Tendler SJB, Williams PM, O’Byrne V, Lewis AL, Russell J (2000) Langmuir 16:5116–5122

    Article  Google Scholar 

  21. van Delden CJ, Engbers GHM, Feijen J (1996) J Biomater Sci Polym Ed 7:727–740

    Article  Google Scholar 

  22. Elam JH, Nygren H (1992) Biomaterials 13:3–8

    Article  Google Scholar 

  23. Cristea M, Ionita D, Hulubei C, Timpu D, Popovici D, Simionescu BC (2011) Polymer 52:1820–1828

    Article  Google Scholar 

  24. Ioanid GE (2005) Rom J Phys 50(9–10):1071–1079

    Google Scholar 

  25. van Oss CJ, Good RJ, Chaudhury MK (1988) Langmuir 4:884–891

    Article  Google Scholar 

  26. van Oss CJ, Ju L, Chaudhury MK, Good RJ (1988) Chem Rev 88:927–941

    Article  Google Scholar 

  27. van Oss CJ (1994) Interfacial forces in aqueous media. Marcel Dekker Inc, New York

    Google Scholar 

  28. Good RJ, van Oss CJ (1992) Wettability. Plenum Press, New York

    Google Scholar 

  29. Wu W, Giese RF Jr, van Oss CJ (1955) Langmuir 11:379–382

    Article  Google Scholar 

  30. Dellavolpe C, Maniglio D, Brugnara M, Siboni S, Morra M (2004) J Colloid Interface Sci 271:434–453

    Article  Google Scholar 

  31. Ström G, Fredriksson M, Stenius P (1987) J Colloid Interface Sci 119:352–361

    Article  Google Scholar 

  32. Gonzalez-Martin ML, Janczuk B, Labajos-Broncano L, Bruque JM (1997) Langmuir 13:5991–5994

    Article  Google Scholar 

  33. Erbil Y (1997) In: Birdi KS (ed) Handbook of surface and colloid chemistry. CRC Press Boca Raton, Florida

    Google Scholar 

  34. Bryjak M, Pozniak G, Gancarz I, Tylus W (2004) Desalination 163:231–238

    Article  Google Scholar 

  35. Chan CM, Ko TM, Hiraoka H (1996) Surf Sci Rep 24:1–54

    Article  Google Scholar 

  36. Lieberman MA, Lichtenberg AJ (1994) Principles of plasma discharges and materials processing. Wiley, New York

    Google Scholar 

  37. Park JB, Oh JS, Gil EL, Kyoung SJ, Lim JT, Yeom GY (2010) J Electrochem Soc 157:D614–D619

    Article  Google Scholar 

  38. Siow KS, Britcher L, Kumar S, Griesser HJ (2006) Plasma Proc Polym 3:392–418

    Article  Google Scholar 

  39. Bhusari D, Hayden H, Tanikella R, Allen SAB, Kohl PA (2005) J Electrochem Soc 152:F162–F170

    Article  Google Scholar 

  40. Inagaki N, Tasaka S, Hibi K (1992) J Polym Sci A 30:1425–1431

    Article  Google Scholar 

  41. Alves P, Pinto S, Kaiser JP, Bruinink A, de Sousa HC, Gil MH (2011) Coll Surf B 82:371–377

    Article  Google Scholar 

  42. Kogoma M, Turba G (1986) Plasma Chem Plasma Proc 6:349–380

    Article  Google Scholar 

  43. Naddaf M, Balasubramanian C, Alegaonkar PS, Bhoraskar VN, Mandle AB, Ganeshan V, Bhoraskar SV (2004) Nucl Instr Meth Phys Res B 222:135–144

    Article  ADS  Google Scholar 

  44. Kamgang JO, Naitali M, Herry JM, Bellon-Fontaine MN, Brisset JL, Briandet R (2009) Plasma Sci Technol 11:187–193

    Article  ADS  Google Scholar 

  45. Gerenser LJ (1993) J Adhes Sci Technol 7:1019–1040

    Article  Google Scholar 

  46. Bellel A, Sahli S, Raynaud P, Segui Y, Ziari Z, Eschaich D, Dennler G (2005) Plasma Process Polym 2:586–594

    Article  Google Scholar 

  47. Faibish RS, Yoshida W, Cohen Y (2002) J Colloid Interface Sci 256:341–350

    Article  Google Scholar 

  48. Ruckenstein E, Gourisankar SV (1984) J Coll Interface Sci 101:436–451

    Article  Google Scholar 

  49. Kwok SCH, Wang J, Chu PK (2005) Diamond Relat Mater 14:78–85

    Article  ADS  Google Scholar 

  50. Agathopoulos S, Nikolopoulos P (1995) J Biomed Mater Res 29:421–429

    Article  Google Scholar 

  51. van Oss CJ (1990) J Protein Chem 9:487–491

    Article  Google Scholar 

  52. van Oss CJ (2003) J Mol Recognit 16:177–190

    Article  Google Scholar 

  53. Vijayanand K, Deepak K, Pattanayak DK, Rama Mohan TR, Banerjee R (2005) Trends Biomater Artif Org 18:73–83

    Google Scholar 

  54. Sharma CP (2001) J Biomater Appl 15:359–381

    Article  Google Scholar 

  55. Brunauer S, Deming LS, Deming WE, Teller E (1940) J Am Chem Soc 62:1723–1732

    Article  Google Scholar 

  56. Guggenheim EA (1966) Application of statistical mechanics. Clarendon Press, Oxford

    Google Scholar 

  57. Anderson RB (1946) J Am Chem Soc 68:686–691

    Article  Google Scholar 

  58. De Boer JH (1968) The dynamical character of adsorption. Clarendon Press, Oxford

    Google Scholar 

  59. Aranovich G, Donohue M (1998) J Colloid Interface Sci 200:273–290

    Article  Google Scholar 

  60. Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity. Academic Press, London

    Google Scholar 

  61. Donohue MD, Aranovich GL (1998) Adv Colloid Interface Sci 76–77:137–152

    Article  Google Scholar 

  62. Cosutchi AI, Hulubei C, Stoica I, Dobromir M, Ioan S (2008) e-Polymers 68:1–15

  63. Chae B, Lee SW, Lee B, Choi W, Kim SB, Jung YM, Jung JC, Lee KH, Ree M (2003) J Phys Chem B 107:11911

    Article  Google Scholar 

  64. Klee D, Höcker H (2000) Adv Polym Sci 49:1–57

    Google Scholar 

  65. Ikada Y (1984) Adv Polym Sci 57:103–140

    Article  Google Scholar 

Download references

Acknowledgment

One of the authors (A. I. Barzic) is grateful for the financial support offered by the European Social Fund—“Cristofor I. Simionescu” Postdoctoral Fellowship Programme (ID POSDRU/89/1.5/S/55216), Sectorial Operational Programme Human Resources Development 2007–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Barzic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popovici, D., Barzic, A.I., Stoica, I. et al. Plasma Modification of Surface Wettability and Morphology for Optimization of the Interactions Involved in Blood Constituents Spreading on Some Novel Copolyimide Films. Plasma Chem Plasma Process 32, 781–799 (2012). https://doi.org/10.1007/s11090-012-9376-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-012-9376-x

Keywords

Navigation