Skip to main content
Log in

Mapping Plasma Chemistry in Hydrocarbon Fuel Processing Processes

  • Review Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A role of plasma chemistry and relative contribution to the overall reaction is explained. Considering relative contribution of thermo chemistry and plasma chemistry, reactions are classified into three different regimes. The way plasma affects kinetic pathways differs according to these regimes. This review introduces how plasma chemistry affects overall reaction and determines kinetic pathways based on the classified regimes. Among these three regimes, In the case of weakly exothermic reactions, discernible role of plasma chemistry is most confusing because plasma chemistry provokes both electron and excited species induced activation and thermal activation that are competitive and interactive. This review introduces the way how to understand the discern plasma chemistry in these reactions. There is possibility of misleading in evaluation of thermal efficiency of process if the concept of warm plasma is not defined correctly. Efficiency and process design also should be based on the classification of the regimes and this review can provide the insight on the understanding specific role and function of plasma chemistry in diverse plasma applied processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tesla N (1896) Apparatus for producing ozone. Patent No. 588,177, United States Patent Office

  2. Renneke RM, Rosocha LA, Kim Y (2008) Temperature effects on gaseous fuel cracking studies using a dielectric barrier discharge. IEEE Trans Plasma Sci 36(6):2905–2908

    Article  CAS  Google Scholar 

  3. Kovacevic E, Berndt J, Stefanovoc I, Becker H-W, Godde C, Strunskus T et al (2009) Formation and material analysis of plasma polymerized carbon nitride nanoparticles. J Appl Phys 105(10):104910

    Article  Google Scholar 

  4. Uddi M, Guo H, Sun W, Ju Y (2011) Studies of C2H6/air and C3H8/air plasma assisted combustion kinetics in a nanosecond discharge. 49th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, AIAA-2011-970, Orlando

  5. Lee DH, Lee J-O, Jeon W, Choi I-G, Kim J-S, Jeong JH et al (2011) Suppression of scar formation in a murine burn wound model by the application of non-thermal plasma. Appl Phys Lett 99:203701

    Article  Google Scholar 

  6. Zaldivar RJ, Nokes JP, Adams PM, Hammoud K, Kim HI (2012) Surface functionalization without lattice degradation of highly crystalline nanoscaled carbon materials using a carbon monoxide atmospheric plasma treatment. Carbon 50(8):2966–2975

    Article  CAS  Google Scholar 

  7. Liu DX, Iza F, Wang XH, Kong MG, Rong MZ (2011) He + O2 + H2O plasmas as a source of reactive oxygen species. Appl Phys Lett 98 22(11):221501

    Google Scholar 

  8. Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Atmospheric pressure plasmas: a review. Spectochim Acta Part B 61:2–30

    Article  Google Scholar 

  9. Plasma 2010 Committee, Plasma Science Committee, National Research Council, National Academy of Sciences (2007) Plasma science: advancing knowledge in the national interest. National Academies Press

  10. Tao X, Bai M, Li X, Long H, Shang S, Yin Y et al (2011) CH4-CO2 reforming by plasma—challenges and opportunities. Prog Energy Comb Sci 37:113–124

    Article  CAS  Google Scholar 

  11. Van Durme J, Dewulf J, Leys C, Van Langenhove H (2008) Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: a review. Appl Catal B Environ 78:324–333

    Article  Google Scholar 

  12. Petitpas G, Rollier J-D, Darmon A, Gonzalez-Aguilar J, Metkemeijer R, Fulcheri L A comparative study of non-thermal plasma assisted reforming technologies. Int J Hydrogen Energy 32(14):2848–2867

  13. Fridman A, Nester S, Kennedy LA, Savdliev A, Mutaf-Yardimci O (1999) Gliding arc gas discharge. Prog Energy Comb Sci 25:211–231

    Article  CAS  Google Scholar 

  14. Trelles JP, Pfender E, Heberlein J (2006) Multiscale finite element modeling of arc dynamics in a DC plasma torch. Plasma Chem Plasma Process 26(6):557–575

    Article  CAS  Google Scholar 

  15. Raizer YP (1997) Gas discharge physics. Springer, Berlin

    Google Scholar 

  16. Kong MG, Kroesen G, Morfill G, Nosenko T, Shimizu T, Van Dijk J et al (2009) Plasma medicine: an introductory review. New J Phys 11:115012

    Article  Google Scholar 

  17. Kim JH, Choi YH, Hwang YS (2006) Electron density and temperature measurement method by using emission spectroscopy in atmospheric pressure non-equilibrium nitrogen plasmas. Phys Plasmas 13:093501

    Article  Google Scholar 

  18. Gutsol A (2010) Warm discharges for fuel conversion. In: Lackner M et al (eds) Handbook of combustion, vol 5 new technologies. Wiley-VCH, Weinheim, pp 323–353

    Google Scholar 

  19. Gutsol A, Rabinovich A, Fridman A (2011) Combustion-assisted plasma in fuel conversion. J Phys D Appl Phys 44:274001

    Article  Google Scholar 

  20. Hwang N, Lee J, Lee DH, Song Y-H (2012) Interactive phenomena of a rotating arc and a premixed CH4 flame. Plasma Chem Plasma Process 32(2):187–200

    Article  CAS  Google Scholar 

  21. Gonzalez-Aguilar J, Petipas G, Lebouvier A, Rollier J-D, Darmon A, Fulcheri L (2009) Three stage modeling of n-octane reforming assisted by a nonthermal arc discharge. Energy Fuels 23:4931–4936

    Article  CAS  Google Scholar 

  22. Benilov MS, Naidis GV (2006) Modeling of hydrogen-rich gas production by plasma reforming of hydrocarbon fuels. Int J Hydrogen Energy 31(6):769–774

    Article  CAS  Google Scholar 

  23. Lutz AE, Bradshaw RW, Bromberg L, Rabinovich A (2004) Thermodynamic analysis of hydrogen production by partial oxidation reforming. Int JHydrogen Energy 29:809–816

    Article  CAS  Google Scholar 

  24. Kim W, Mungal MG, Cappelli MA (2010) The role of in situ reforming in plasma enhanced ultra lean premixed CH4/air flames. Comb Flame 157:374–383

    Article  CAS  Google Scholar 

  25. Gallagher MJ (2010) Partial oxidation and autothermal reforming of heavy hydrocarbon fuels with non-equilibrium gliding arc plasma for fuel cell application. Ph.D. dissertation, Drexel University

  26. Sathiamoorthy G, Kalyana S, Finney WC, Clark RJ, Locke BR (1999) Chemical reaction kinetics and reactor modeling of NO x removal in a pulsed streamer corona discharge reactor. Ind Eng Chem Res 38(5):1844–1855

    Article  CAS  Google Scholar 

  27. Yang Y (2003) Direct non-oxidative CH4 conversion by non-thermal plasma: modeling study. Plasma Chem Plasma Process 23(2):327–346

    Article  CAS  Google Scholar 

  28. Barni R, Benocci R, Broggi C, Riccardi C (2006) Chemical kinetics of an argon/CH4 plasma in a hydrogen reforming reactor. Eur Phys J Appl Phys 35:135–143

    Article  CAS  Google Scholar 

  29. Kim KT, Lee DH, Kwon S (2006) Effect of thermal and chemical surface-flame interaction on flame quenching. Comb Flame 146:19–28

    Article  CAS  Google Scholar 

  30. Singleton D, Pendleton SJ, Gundersen MA (2011) The role of non-thermal transient plasma for enhanced flame ignition in C2H4-air. J Phys D Appl Phys 44:022001

    Article  Google Scholar 

  31. Kosarev IN, Aleksandrov NL, Kindysheve SV, Starikovskais SM, Starikovskii AY (2008) Kinetics of ignition of saturated hydrocarbons by nonequilibrium plasma: CH4-containing mixtures. Comb Flame 154:569–586

    Article  CAS  Google Scholar 

  32. Kuo KK (1986) Principles of combustion. Wiley, New York

    Google Scholar 

  33. Starikovskaia SM (2006) Plasma assisted ignition and combustion. J Phys D Appl Phys 39:R265–R299

    Article  CAS  Google Scholar 

  34. Esakov II, Grachev LP, Khodataev KV, Vinogradov VA, Van Wie DM (2006) Efficiency of propane-air mixture combustion assisted by deeply undercritical MW discharge in cold high-speed airflow. In: 44th AIAA aerospace sciences meeting and exhibition (Reno, Nevada, USA) AIAA-2006-1212

  35. Chintala N, Bao A, Lou G, Adamovich IV (2006) Measurements of combustion efficiency in nonequilibrium RF plasma-ignited flows. Combust Flame 144:744–756

    Article  CAS  Google Scholar 

  36. Anikin NB, Mintoussov EI, Pancheshnyi SV, Roupassov DV, Sych VE, Starikovskii AY (2003) Nonequilibrium plasmas and its applications for combustion and hypersonic flow control. 41st AIAA aerospace sciences meeting and exhibition (Reno, Nevada, USA) AIAA-2003-1053

  37. Galley D, Pilla G, Lacoste D, Ducruix S, Lacas F, Veynante D et al. (2005) Plasma-enhanced combustion of a lean premixed air-propane turbulent flame using a nanosecond repetitively pulsed plasma. 43rd AIAA aerospace science meeting and exhibition (Reno, Nevada, USA) AIAA 2005-1193

  38. Korolev YuD, Frants OB, Landl NV, Kasyanov VS, Galanov SI, Sidorova OI et al (2012) Propane oxidation in a plasma torch of a low-current nonsteady-state plasmatron. IEEE Trans Plasma Sci 40(2):535–542

    Article  CAS  Google Scholar 

  39. Wu L, Lane J, Cernansky NP, Miller DL, Fridman AA, Starikovskiy AY (2011) Plasma-assisted ignition below self-ignition threshold in CH4, ethane, propane and butane-air mixtures. Proc Comb Inst 33:3219–3224

    Article  CAS  Google Scholar 

  40. Rao X, Hammack S, Carter C, Grotjohn T, AsmussenJr J, Lee T (2011) Microwave-plasma-coupled re-ignition of CH4 and oxygen mixture under auto-ignition temperature. IEEE Trans Plasma Sci 39(12):3307–3313

    Article  CAS  Google Scholar 

  41. Sun W, Uddi M, Won SH, Ombrello T, Carter C, Ju Y (2012) Kinetic effects of non-equilibrium plasma-assisted CH4 oxidation on diffusion flame extinction limits. Comb Flame 159:221–229

    Article  CAS  Google Scholar 

  42. Mintoussov EI, Pancheshnyi SV, Starikovskii AY (2004) Propane air flame control by non-equilibrium low-temperature pulsed nanosecond barrier discharge. 42nd AIAA Aerospace Science Meeting and Exhibition (Reno, Nevada, USA, 5-8 January 2004): 12385-12395

  43. Ombrello T, Won SH, Ju Y, Williams S (2010) Flame propagation enhancement by plasma excitation of oxygen. Part II: Effects of O2(a1Δg). Comb Flame 157:1916–1928

    Article  CAS  Google Scholar 

  44. Fidalgo B, Dominguez A, Pis JJ, Menéndez JA (2008) Microwave-assisted dry reforming of CH4. Int J Hydrogen Energy 33(16):4337–4344

    Article  CAS  Google Scholar 

  45. Long H, Shang S, Tao X, Yin Y, Dai X (2008) CO2 reforming of CH4 by combination of cold plasma jet and Ni/g-Al2O3 catalyst. Int J Hydrogen Energy 33(20):5510–5515

    Article  CAS  Google Scholar 

  46. Fauchais P, Vardelle A (1997) Thermal plasmas. IEEE Trans Plasma Sci 25(6):1258–1280

    Article  CAS  Google Scholar 

  47. Liu C-J, Mallinson R, Lobban L (1998) Nonoxidative CH4 conversion to acetylene over zeolite in a low temperature plasma. J Catal 179:326–334

    Article  CAS  Google Scholar 

  48. Heintze M, Magureanu M (2002) CH4 conversion into acetylene in a microwave plasma: optimization of the operating parameters. J Appl Phys 92:2276

    Article  CAS  Google Scholar 

  49. Bo Z, Yan J, Li X, Chi Y, Cen K (2009) Plasma assisted dry CH4 reforming using gliding arc gas discharge: effect of feed gases proportion. Int J Hydrogen Energy 33(20):5545–5553

    Article  Google Scholar 

  50. Kado S, Urasaki K, Sekine Y, Fujimoto K, Nozaki T, Okazaki K (2003) Reaction mechanism of CH4 activation using non-equilibrium pulsed discharge at room temperature. Fuel 2:2291–2297

    Article  Google Scholar 

  51. Allan M (2005) Excitation of the four fundamental vibrations of CH4 by electron impact near threshold. J Phys B: At Mol Opt Phys 38:1679–1685

    Article  CAS  Google Scholar 

  52. Nozaki T, Hattori A, Okazaki K (2004) Partial oxidation of CH4 using a microscale non-equilibrium plasma reactor. Catal Today 98:616

    Article  Google Scholar 

  53. Kim Y, Kang WS, Park JM, Hong SH, Song H-Y, Kim SJ (2004) Experimental and numerical analysis of streamers in pulsed corona and dielectric barrier discharges. IEEE Trans Plasma Sci 32(1):18–24

    Article  CAS  Google Scholar 

  54. De Bie C, Verheyde B, Martens T, van Dijk J, Paulussen S, Bogaerts A (2011) Fluid modeling of the conversion of CH4 into higher hydrocarbons in an atmospheric pressure dielectric barrier discharge. Plasma Process Polym 8(11):1033–1058

    Article  Google Scholar 

  55. Kassel LS (1932) The thermal decomposition of CH4. J Am Chem Soc 54(10):3949–3961

    Article  CAS  Google Scholar 

  56. Hwang N, Song Y-H, Cha MS (2010) Efficient use of CO2 reforming of CH4 with an arc-jet plasma. IEEE Trans Plasma Sci 38(12):3291–3299

    Article  CAS  Google Scholar 

  57. Yao SL, Ouyang F, Nakayama A, Suzuki E, Okumoto M, Mizuno A (2000) Oxidative coupling and reforming of CH4 with carbon dioxide using a high-frequency pulsed plasma. Energy Fuels 14(4):910–914

    Article  CAS  Google Scholar 

  58. Kim T-S, Song S, Chun K-M, Lee SH (2010) An experimental study of syn-gas production via microwave plasma reforming of CH4, iso-octane and gasoline. Energy 35:2734–2743

    Article  CAS  Google Scholar 

  59. Lee DH, Kim K-T, Cha MS, Song Y-H (2007) Optimization scheme of rotating glid arc for CH4 reforming. Proc Comb Inst 31:3343–3351

    Article  Google Scholar 

  60. Goujard V, Nozaki T, Yuzawa S, Agiral A, Okazaki K (2011) Plasma-assisted partial oxidation of CH4 at low temperatures: numerical analysis of gas-phase chemical mechanism. J Phys D Appl Phys 44:274011

    Article  Google Scholar 

  61. Levko D, Shchedrin A, Chernyak V, Olszewski S, Nedybaliuk O (2011) Plasma kinetics in ethanol/water/air mixture in a ‘tornado’-type electrical discharge. J Phys D Appl Phys 44:145206

    Article  Google Scholar 

  62. Bromberg L, Cohn DR, Rabinovich A (1998) Plasma reforming of CH4. Energy Fuels 12:11–18

    Article  CAS  Google Scholar 

  63. Petitpas G, Gonzalez-Z-AguilarR J, Darmon A, Fulcheri L (2010) Ethanol and E85 reforming assisted by non thermal arc discharge. Energy Fuels 24:2607–2613

    Article  CAS  Google Scholar 

  64. Lee DH, Kim K-T, Cha MS, Song YH (2010) Effect of excess oxygen in plasma reforming of diesel fuel. Int J Hydrogen Energy 35:4668–4675

    Article  CAS  Google Scholar 

  65. Shekhawat D, Berry DA, Gardner TH, Spivey JJ (2006) Catalytic reforming of liquid hydrocarbon fuels for fuel cell applications. Catalysis 19:184–253

    Article  CAS  Google Scholar 

  66. Carazeanu Popovici I, Birghila S, Voicu G, Ionescu V, Ciupina V, Prodan G (2010) Morphological and microstructural characterization of some petroleum cokes as potential anode materials in lithium ion batteries. J Optoelectronics Adv Mater 12(9):1903–1908

    CAS  Google Scholar 

  67. Richter H, Howard JB (2000) Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways. Prog Energy Comb Sci 26(4):565–608

    Article  CAS  Google Scholar 

  68. Kee RJ, Rupley FM, Miller JA (1995) Chemkin-II: a fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Sandia Report SAND89: 8009B

  69. Lee DH, Kim K-T, Cha MS, Song Y-H (2010) Plasma-controlled chemistry in plasma reforming of CH4. Int J Hydrogen Energy 35:10967–10976

    Article  CAS  Google Scholar 

  70. Holmen A, Olsvik O, Rokstad OA (1995) Pyrolysis of natural gas: chemistry and process concepts. Fuel Process Technol 42:249–267

    Article  CAS  Google Scholar 

  71. Heintze M, Magureanu M, Kettlitz M (2002) Mechanism of C2 hydrocarbon formation from CH4 in a pulsed microwave plasma. J Appl Phys 92(12):7022–7031

    Article  CAS  Google Scholar 

  72. Krylov OV (1993) Catalytic reactions of partial methane oxidation. Catal Today 18:209–302

    Article  CAS  Google Scholar 

  73. Czernichowski A (2001) Glidarc assisted preparation of the synthesis gas from natural and waste hydrocarbons gases. Oil Gas Sci Technol Rev IFP 56:181–198

    Article  CAS  Google Scholar 

  74. Lieberman M, Lichtenberg A (1994) Principles of plasma discharges and materials processing. Wiley, New York

    Google Scholar 

  75. Fridman AM (2008) Plasma chemistry. Cambridge University Press, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae Hoon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D.H., Kim, KT., Song, YH. et al. Mapping Plasma Chemistry in Hydrocarbon Fuel Processing Processes. Plasma Chem Plasma Process 33, 249–269 (2013). https://doi.org/10.1007/s11090-012-9407-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-012-9407-7

Keywords

Navigation