Skip to main content
Log in

Surface Modification of Poly-ε-Caprolactone with an Atmospheric Pressure Plasma Jet

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this work, poly-ε-caprolactone samples are modified by an atmospheric pressure plasma jet in pure argon and argon/water vapour mixtures. In a first part of the paper, the chemical species present in the plasma jet are identified by optical emission spectroscopy and it was found that plasmas generated in argon/0.05 % water vapour mixtures show the highest emission intensity of OH (A–X) at 308 nm. In a subsequent section, plasma jet surface treatments in argon and argon/water vapour mixtures have been investigated using contact angle measurements and X-ray photoelectron spectroscopy. The polymer samples modified with the plasma jet show a significant decrease in water contact angle due to the incorporation of oxygen-containing groups, such as C–O, C=O and O–C=O. The most efficient oxygen inclusion was however found when 0.05 % of water vapour is added to the argon feeding gas, which correlates with the highest intensity of OH (X) radicals. By optimizing the OH (X) radical yield in the plasma jet, the highest polymer modification efficiency can thus be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Langer R, Vacanti JP (1993) Science 260:920–926

    Article  CAS  Google Scholar 

  2. Wang YJ, Lu L, Zheng YD, Chen XF (2006) J Biomed Mater Res A 76A:589–595

    Article  CAS  Google Scholar 

  3. Djordjevic I, Britcher LG, Kumar S (2008) Appl Surf Sci 254:1929–1935

    Article  CAS  Google Scholar 

  4. Desmet T, Morent R, De Geyter N, Leys C, Schacht E, Dubruel P (2009) Biomacromolecules 10:2351–2378

    Article  CAS  Google Scholar 

  5. Ryu GH, Yang WS, Roh HW, Lee IS, Kim JK, Lee GH, Lee DH, Park BJ, Lee MS, Park JC (2005) Surf Coat Technol 193:60–64

    Article  CAS  Google Scholar 

  6. Hutmacher DW (2000) Biomaterials 21:2529–2543

    Article  CAS  Google Scholar 

  7. Chen GP, Ushida T, Tateishi T (2002) Macromol Biosci 2:67–77

    Article  CAS  Google Scholar 

  8. Morent R, De Geyter N, Desmet T, Dubruel P, Leys C (2011) Plasma Process Polym 8:171–190

    Article  CAS  Google Scholar 

  9. Shen H, Hu XX, Yang F, Bel JZ, Wang SG (2007) Biomaterials 28:4219–4230

    Article  CAS  Google Scholar 

  10. Morent R, De Geyter N, Trentesaux M, Gengembre L, Dubruel P, Leys C, Payen E (2010) Plasma Chem Plasma Process 30:525–536

    Article  CAS  Google Scholar 

  11. Park GE, Pattison MA, Park K, Webster TJ (2005) Biomaterials 26:3075–3082

    Article  CAS  Google Scholar 

  12. Zhu YB, Gao CY, Liu XY, Shen JC (2002) Biomacromolecules 3:1312–1319

    Article  CAS  Google Scholar 

  13. Chong MSK, Lee CN, Teoh SH (2007) Mat Sci Eng C 27:309–312

    Article  CAS  Google Scholar 

  14. Ho MH, Lee JJ, Fan SC, Wang DM, Hou LT, Hsieh HJ, Lai JY (2007) Macromol Biosci 7:467–474

    Article  CAS  Google Scholar 

  15. Montanari L, Costantini M, Signoretti EC, Valvo L, Santucci M, Bartolomei M, Fattibene P, Onori S, Faucitano A, Conti B, Genta I (1998) J Controlled Release 56:219–229

    Article  CAS  Google Scholar 

  16. Place ES, George JH, Williams CK, Stevens MM (2009) Chem Soc Rev 38:1139–1151

    Article  CAS  Google Scholar 

  17. Ho MH, Hou LT, Tu CY, Hsieh HJ, Lai JY, Chen WJ, Wang DM (2006) Macromol Biosci 6:90–98

    Article  CAS  Google Scholar 

  18. Cheng ZY, Teoh SH (2004) Biomaterials 25:1991–2001

    Article  CAS  Google Scholar 

  19. Borcia G, Brown NMD (2007) J Phys D-Appl Phys 40:1927–1936

    Article  CAS  Google Scholar 

  20. Heyse P, Dams R, Paulussen S, Houthofd K, Janssen K, Jacobs PA, Sels BF (2007) Plasma Process Polym 4:145–157

    Article  CAS  Google Scholar 

  21. Martin S, Massines F, Gherardi N, Jimenez C (2004) Surf Coat Technol 177:693–698

    Article  Google Scholar 

  22. Han I, Kwon BJ, Vagaska B, Kim BJ, Kang JK, Lee MH, Kim HH, Park JC, Wang KK, Kim YR, An JS, Lee JM, Hyun CY, Jeong JH, Lim SJ (2011) Macromol Res 19:1134–1141

    Article  CAS  Google Scholar 

  23. Park SA, Lee SH, Kim W, Han I, Park JC (2011) J Tissue Eng Regen Med 8:A23–A27

    Google Scholar 

  24. Little U, Buchanan F, Harkin-Jones E, Graham B, Fox B, Boyd A, Meenan B, Dickson G (2009) Acta Biomater 5:2025–2032

    Article  CAS  Google Scholar 

  25. Yildirim ED, Gandhi M, Fridman A, Guceri S, Sun W (2008) In: Guceri S, Fridman A (eds) Plasma assisted decontamination of biological and chemical agents. Springer, Dordrecht

    Google Scholar 

  26. Martins A, Pinho ED, Faria S, Pashkuleva I, Marques AP, Reis RL, Neves NM (2009) Small 5:1195–1206

    CAS  Google Scholar 

  27. Lommatzsch U, Pasedag D, Baalmann A, Ellinghorst G, Wagner HE (2007) Plasma Process Polym 4:S1041–S1045

    Article  Google Scholar 

  28. Schutze A, Jeong JY, Babayan SE, Park J, Selwyn GS, Hicks RF (1998) IEEE Trans Plasma Sci 26:1685–1694

    Article  CAS  Google Scholar 

  29. Weltmann KD, Kindel E, Brandenburg R, Meyer C, Bussiahn R, Wilke C, von Woedtke T (2009) Contrib Plasma Phys 49:631–640

    Article  Google Scholar 

  30. Weltmann KD, Brandenburg R, von Woedtke T, Ehlbeck J, Foest R, Stieber M, Kindel E (2008) J Phys D-Appl Phys 41:194008

    Article  Google Scholar 

  31. Hibert C, Gaurand I, Motret O, Pouvesle JM (1999) J Appl Phys 85:7070–7075

    Article  CAS  Google Scholar 

  32. Massines F, Gouda G (1998) J Phys D-Appl Phys 31:3411–3420

    Article  CAS  Google Scholar 

  33. Nikiforov AY, Sarani A, Leys C (2011) Plasma Sources Sci Technol 20:015014

    Article  Google Scholar 

  34. Bornholdt S, Wolter M, Kersten H (2010) Eur Phys J D 60:653–660

    Article  CAS  Google Scholar 

  35. Sarani A, Nikiforov AY, Leys C (2010) Phys Plasmas 17:063504

    Article  Google Scholar 

  36. Morent R, De Geyter N, Leys C (2008) Nucl Instrum Methods Phys Res B 266:3081–3085

    Article  CAS  Google Scholar 

  37. Morent R, De Geyter N, Leys C, Gengembre L, Payen E (2008) Surf Interface Anal 40:597–600

    Article  CAS  Google Scholar 

  38. De Geyter N, Morent R, Leys C (2008) Surf Interface Anal 40:608–611

    Article  Google Scholar 

  39. Morent R, De Geyter N, Gengembre L, Leys C, Payen E, Van Vlierberghe S, Schacht E (2008) Eur Phys J Appl Phys 43:289–294

    Article  CAS  Google Scholar 

  40. Briggs D (1998) Surface analysis of polymers by XPS and static SIMS. Cambridge University Press, Cambridge

    Book  Google Scholar 

  41. Dorai R, Kushner MJ (2003) J Phys D-Appl Phys 36:666–685

    Article  CAS  Google Scholar 

  42. Hong YJ, Nam CJ, Song KB, Cho GS, Uhm HS, Choi DI, Choi EH (2012) J Instrum 7:C03046

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. De Geyter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Geyter, N., Sarani, A., Jacobs, T. et al. Surface Modification of Poly-ε-Caprolactone with an Atmospheric Pressure Plasma Jet. Plasma Chem Plasma Process 33, 165–175 (2013). https://doi.org/10.1007/s11090-012-9419-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-012-9419-3

Keywords

Navigation