Skip to main content
Log in

Atmospheric Pressure Plasma Polymerization of Super-Hydrophobic Nano-films Using Hexamethyldisilazane Monomer

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The super-hydrophobic nano-films were synthesized by atmospheric pressure plasma jet using hexamethyldisilazane. In this paper, the atmospheric pressure plasma jet reacting with air was used to determine the formation of plasma polymerized nano-film. The atmospheric pressure plasma polymerized nano-film surface properties were determined by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and atomic forced microscopy. Specifically, it has been observed that atmospheric pressure plasma polymerization with the appropriate monomer gas flow rate cause the formation of the super-hydrophobic film. The surface properties of atmospheric pressure plasma polymerized nano-films were determined as the Cassie–Baxter state. It was examined that super-hydrophobic nano-film surface exhibits the organosilicon sphere stacking structure. Such sphere stacking structure does not only cause the hydrophobicity, it also stabilizes the Cassie regime, and thus favors the water repellency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yu QS, Yasuda HK (1998) Plasma Chem Plasma Process 18:461–485

    Article  CAS  Google Scholar 

  2. Babayan SE, Ding G, Nowling GR, Yang X, Hicks RF (2002) Plasma Chem Plasma Process 22:255–269

    Article  CAS  Google Scholar 

  3. Miclea M, Franzke J (2007) Plasma Chem Plasma Process 27:205–224

    Article  CAS  Google Scholar 

  4. Dong X, Chen M, Wang Y, Yu QS (2014) Clin Plasma Med 1:11–16

    Article  Google Scholar 

  5. Hsu YW, Yang YJ, Wu CY, Hsu CC (2010) Plasma Chem Plasma Process 30(3):363–372

    Article  CAS  Google Scholar 

  6. Ma Y, Chen J, Yang B, Pu S, Yu QS (2014) IEEE Trans Plasma Sci 42:1607–1614

    Article  Google Scholar 

  7. Farhat S, Gilliam M, Rabago M, Baranc C, Walterc N, Zand A (2013) Surf Coat Technol 241:123–129

    Article  Google Scholar 

  8. Gilliam M, Farhat S, Zand A, Magyar M, Garner G (2014) Plasma Process Polym 11:1037–1043

    Article  CAS  Google Scholar 

  9. Chang CH, Ramshaw JD (1993) Plasma Chem Plasma Process 13:189–202

    Article  CAS  Google Scholar 

  10. Tang J, Zhao W, Duan J, Duan Y (2011) IEEE Trans Plasma Sci 39:2080–2081

    Article  CAS  Google Scholar 

  11. Ritts AC, Liu CH, Yu QS (2011) Thin Solid Films 519:4289–4824

    Article  Google Scholar 

  12. De Geyter N, Morent R, Gengembre L, Leys C, Payen E, Van Vlierberghe S, Schacht E (2008) Plasma Chem Plasma Process 28:289–298

    Article  Google Scholar 

  13. Huang C, Hsu WT, Liu CH, Wu SY, Yang SH, Chen TH, Wei TC (2009) IEEE Trans Plasma Sci 37:1127–1128

    Article  Google Scholar 

  14. Huang C, Wu SY, Liu CH, Chang YC, Tsai CY (2011) Jpn J Appl Phys 50:01AH0501–01AH0505

    Article  Google Scholar 

  15. Owens DK, Wendt RC (1969) J Appl Polym Sci 13:1741–1747

    Article  CAS  Google Scholar 

  16. Quéré D (2008) Annu Rev Mater Res 38:71–99

    Article  Google Scholar 

  17. Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E (2009) Rev Mod Phys 81:739–805

    Article  CAS  Google Scholar 

  18. Onda T, Shibuichi S, Satoh N, Tsujii K (1996) Langmuir 12:2125–2127

    Article  CAS  Google Scholar 

  19. Bico J, Thiele U, Quéré D (2002) Colloids Surf A Physicochem Eng Asp 206:41–46

    Article  CAS  Google Scholar 

  20. Gilliam M, Yu QS (2007) J Appl Polym Sci 105:360–372

    Article  CAS  Google Scholar 

  21. Yasuda H (2005) Luminous chemical vapor deposition and interface engineering. Marcel Dekker, New York

    Google Scholar 

  22. Tsai CY, Juang RS, Huang C (2011) Jpn J Appl Phys 50:08KA0201–08KA0207

    Article  Google Scholar 

  23. Trunec D, Narvratil Z, Stahel P, Zajickova L, Bursikova V, Cech J (2004) J Phys D Appl Phys 37:2112–2120

    Article  CAS  Google Scholar 

  24. Alexandrov SE, McSporran N, Hitchman ML (2005) Chem Vap Depos 11:481–490

    Article  CAS  Google Scholar 

  25. Hody H, Pireaux JJ, Choquet P, Maryline MC (2010) Surf Coat Technol 205:22–29

    Article  CAS  Google Scholar 

  26. Bulou S, Le Brizoua L, Miska P, de Poucques L, Hugon R, Belmahi M, Bougdira J (2011) Surf Coat Technol 205:S214–S217

    Article  CAS  Google Scholar 

  27. van Ooij WJ, Eufinger S, Guo S (1997) Plasma Chem Plasma Process 17:123–154

    Article  Google Scholar 

  28. Alexander MR, Short RD, Jones FR, Michaeli W, Blomfield CJ (1999) Appl Surf Sci 137:179–183

    Article  CAS  Google Scholar 

  29. Wavhal DS, Zhang J, Steen ML, Fisher ER (2006) Plasma Process Polym 3:276–287

    Article  CAS  Google Scholar 

  30. Choudhury AJ, Barve SA, Chutia J, Kakati H, Pal AR, Jagannath N, Mithal R, Kishore M, Pandey DS (2011) Thin Solid Films 519:7864–7870

    Article  CAS  Google Scholar 

  31. Morent R, Geyter N, Vlierberghe S, Dubruel P, Leys C, Gengembre L, Schacht E, Payen E (2009) Prog Org Coat 64:304–310

    Article  CAS  Google Scholar 

  32. Yasuda H (1985) Plasma polymerization. Academic Press, London

    Google Scholar 

  33. Takahashi K, Tachibana K (2001) J Vac Sci Technol A19:2055–2060

    Article  Google Scholar 

  34. Teare DOH, Spanos CG, Ridley P, Kinmond EJ, Roucoules V, Badyal JPS, Brewer Sa, Coulson S, Willis C (2002) Chem Mater 14:4566–4571

    Article  CAS  Google Scholar 

  35. Hsieh CT, Chen WY, Wu FL (2008) Carbon 46:1218–1224

    Article  CAS  Google Scholar 

  36. Lin JH, Tsai CY, Liu WT, Syu YK, Huang C (2013) Jpn J Appl Phys 52:05EA01–05EB06

    Article  Google Scholar 

  37. Guruvenket S, Andrie S, Simon M, Johnson KW, Sailer RA (2012) ACS Appl Mater Interfaces 4:5293–5299

    Article  CAS  Google Scholar 

  38. Blaszczyk-Lezak I, Wrobel AM, Aoki T, Nakanishi Y, Kucinska I, Tracz A (2006) Thin Solid Film 497:24–34

    Article  CAS  Google Scholar 

  39. Nowling GR, Yajima M, Babayan SE, Moravej M, Yang X, Hoffman W, Hicks RF (2005) Plasma Sources Sci Technol 14:477–484

    Article  CAS  Google Scholar 

  40. Ladwig A, Babayan S, Smith M, Hester M, Highland W, Koch R, Hicks RF (2007) Surf Coat Technol 201:6460–6464

    Article  CAS  Google Scholar 

  41. Tanaka K, Inomata T, Kogoma M (2001) Thin Solid Films 386:217–221

    Article  CAS  Google Scholar 

  42. Borris J, Thomas M, Klages C-P, Faupel F, Zaporojtchenko V (2007) Plasma Process Polym 4:S482–S486

    Article  Google Scholar 

  43. Weichart J, Mtiller J (1991) Prog Colloid Polym Sci 85:111–117

    Article  CAS  Google Scholar 

  44. Hsieh CT, Wu F, Yang S (2008) Surf Coat Technol 202:6103–6108

    Article  CAS  Google Scholar 

  45. Shibuichi S, Yamamoto T, Onda T, Tsujii K (1998) J Colloid Interface Sci 208:287–294

    Article  CAS  Google Scholar 

  46. Hang T, Hu A, Ling H, Li M, Mao D (2010) Appl Surf Sci 256:2400–2404

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the support of Ministry of Science and Technology through Grants MOST 103-2221-E-155-065 and MOST 104-2221-E-155-050.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Lin, HH. & Li, C. Atmospheric Pressure Plasma Polymerization of Super-Hydrophobic Nano-films Using Hexamethyldisilazane Monomer. Plasma Chem Plasma Process 35, 1015–1028 (2015). https://doi.org/10.1007/s11090-015-9645-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-015-9645-6

Keywords

Navigation