Skip to main content
Log in

Non-equilibrium Modeling of Tungsten-Inert Gas Arcs

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The paper gives an overview of the most common non-equilibrium approaches for modeling of tungsten-inert gas arc plasma, which have been developed up to date, in particular two-temperature and fully non-equilibrium approaches. The first group implies thermal non-equilibrium but chemical equilibrium whereas the second group describes the arc plasma avoiding assumptions of both thermal and chemical equilibrium. The common and specific features of the physical description are discussed. Results of the most recent fully non-equilibrium model, which is applied for the first time to tungsten-inert gas arc arrangement with a truncated conical tip of a doped tungsten cathode, are compared with those of previously published non-equilibrium models and experimental data. The general diffusion representation and more accurate boundary conditions incorporating the properties of the space-charge sheaths adjacent to the electrodes enable a novel description of the arc core, the near-electrode regions and the arc fringes in a self-consistent manner and provides a deeper insight into the arc properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Olsen HN (1963) The electric arc as a light source for quantitative spectroscopy. J Quant Spectrosc Radiat Transf 3:305–333

    Article  CAS  Google Scholar 

  2. Griem HR (1964) Plasma spectroscopy. MacGraw Hill, New York

    Google Scholar 

  3. Drawin HW (1971) Thermodynamic properties of the equilibrium and nonequilibrium states of plasmas. In: Venugopalan M (ed) Reactions under plasma conditions, vol 1. Wiley, New York, pp 53–238

    Google Scholar 

  4. Bott JF (1966) Spectroscopic measurement of temperatures in an argon plasma arc. Phys Fluids 9:1540–1547

    Article  CAS  Google Scholar 

  5. Kruger CH (1970) Nonequilibrium in confined-arc plasmas. Phys Fluids 13:1737–1746

    Article  CAS  Google Scholar 

  6. Giannaris RJ, Incropera FP (1971) Nonequiibrium effects in atmospheric argon arc plasma. J Quant Spectrosc Radiat Transf 11:291–307

    Article  CAS  Google Scholar 

  7. Giannaris RJ, Incropera FP (1973) Radiative and collisional effects in cylindrically confined plasma—I. Optically thin considerations. J Quant Spectrosc Radiat Transf 13:167–181

    Article  CAS  Google Scholar 

  8. Giannaris RJ, Incropera FP (1973) Radiative and collisional effects in cylindrically confined plasma—II. Absorption effects. J Quant Spectrosc Radiat Transf 13:183–195

    Article  CAS  Google Scholar 

  9. Uhlenbusch J (1974) Non-equilibrium effects in arc discharges. In: McGowan JW, John PK (eds) Gaseous electronics: some applications. North-Holland, Amsterdam, pp 101–132

    Google Scholar 

  10. Cram LE, Poladian L, Roumellotis G (1988) Departures from equilibrium in a free-burning argon arc. J Phys D Appl Phys 21:418–425

    Article  CAS  Google Scholar 

  11. Chang CH, Ramshaw JD (1994) Numerical simulation of nonequilibrium effects in an argon plasma jet. Phys Plasmas 1(11):3698–3708

    Article  CAS  Google Scholar 

  12. Lowke JJ, Murphy AB (1998) Plasma flows. In: Johnson RW (ed) The handbook of fluid dynamics. CRC Press, Boca Raton, p 15-1-31

    Google Scholar 

  13. Benilov MS (2008) Understanding and modelling plasma–electrode interaction in high-pressure arc discharges: a review. J Phys D Appl Phys 41(14):144001

    Article  Google Scholar 

  14. Heberlein J, Mentel J, Pfender E (2010) The anode region of electric arcs: a survey. J Phys D Appl Phys 43(2):023001

    Article  Google Scholar 

  15. Benilov MS, Almeida NA, Baeva M, Cunha MD, Benilova LG, Uhrlandt D (2016) Account of near-cathode sheath in numerical models of high-pressure arc discharges. J Phys D Appl Phys 49:215201

    Article  Google Scholar 

  16. Shirvan AJ, Choquet I (2016) A review of cathode-arc coupling in GTAW. Weld World 60:821–835

    Article  Google Scholar 

  17. Hsu KC, Pfender E (1983) Two-temperature modelling of the free-burning, high-intensity arc. J Appl Phys 54(8):4359–4366

    Article  CAS  Google Scholar 

  18. Mitchner M, Kruger CH (1973) Partially ionized gases. Wiley, New York

    Google Scholar 

  19. Devoto RS (1967) Transport coefficients of partially ionized argon. Phys D Fluids 16(5):616–623

    Article  Google Scholar 

  20. Freton P, Gonzalez JJ, Ranarijaona Z, Mougenot J (2012) Energy equation formulations for two-temperature modelling of “thermal plasmas”. J Phys D Appl Phys 45:465206

    Article  Google Scholar 

  21. Trelles JP, Pfender E, Heberlein JVR (2007) Modelling of the arc reattachment process in plasma torches. J Phys D Appl Phys 40:5635–5648

    Article  CAS  Google Scholar 

  22. Li HP, Benilov MS (2007) Effect of a near-cathode sheath on heat transfer in high-pressure arc plasmas. J Phys D Appl Phys 40:2010–2017

    Article  CAS  Google Scholar 

  23. Wu CS, Ushio M, Tanaka M (1999) Modeling the anode boundary layer of high-intensity argon arcs. Comput Mater Sci 15:302–310

    Article  CAS  Google Scholar 

  24. Haidar J (1999) Non-equilibrium modelling of transferred arcs. J Phys D Appl Phys 32:263–272

    Article  CAS  Google Scholar 

  25. Boselli M, Colombo V, Ghedini E, Gherardi M, Sanibondi P (2013) Two-temperature modelling and optical emission spectroscopy of a constant current plasma arc welding process. J Phys D Appl Phys 46:224009

    Article  Google Scholar 

  26. Park J, Heberlein J, Pfender E, Candler G, Chang CH (2008) Two-dimensional numerical modeling of direct-current electric arcs in nonequilibrium. Plasma Chem Plasma Process 28:213–231

    Article  CAS  Google Scholar 

  27. Choquet I, Shirvan AJ, Nilsson H (2012) On the choice of electromagnetic model for short high-intensity arcs, applied to welding. J Phys D Appl Phys 45:205203

    Article  Google Scholar 

  28. Freton P, Gonzalez JJ, Masquere M, Reichert F (2011) Magnetic field approaches in dc thermal plasma modelling. J Phys D Appl Phys 44:345202

    Article  Google Scholar 

  29. COMSOL Multiphysics® v. 5.2. www.comsol.com (Stockholm: COMSOL)

  30. Van de Sanden MCM, Schram PPJM (1991) Generalized law of mass action for a two-temperature plasma. Phys Rev A 44:5150–5157

    Article  Google Scholar 

  31. Rat V, Murphy AB, Aubreton J, Elchinger MF, Fauchais P (2008) Treatment of non-equilibrium phenomena in thermal plasma flows. J Phys D Appl Phys 41:183001

    Article  Google Scholar 

  32. Colombo V, Ghedini E, Danibondi P (2008) Thermodynamic and transport properties in non-equilibrium argon, oxygen and nitrogen thermal plasmas. Prog Nucl Energy 50:921–993

    Article  CAS  Google Scholar 

  33. Hinnov E, Hirschberg JG (1962) Electron-ion recombination in dense plasmas. Phys Rev 125(3):795–801

    Article  CAS  Google Scholar 

  34. Hoffert MI, Lien H (1967) Quasi-one-dimensional, nonequilibrium gas dynamics of partially ionized two-temperature argon. Phys Fluids 10(8):1769–1777

    Article  CAS  Google Scholar 

  35. Baeva M, Kozakov R, Gorchakov S, Uhrlandt D (2012) Two-temperature chemically non-equilibrium modelling of transferred arcs. Plasma Sources Sci Technol 21(5):055027

    Article  Google Scholar 

  36. Evans DL, Tankin RS (1967) Measurement of emission and absorption of radiation by an argon plasma. Phys Fluids 10(6):1137–1144

    Article  Google Scholar 

  37. Menart J, Malik S (2002) Net emission coefficients for argon-iron thermal plasmas. J Phys D Appl Phys 35:867–874

    Article  CAS  Google Scholar 

  38. Beulens JJ, Milojevic D, Schram DC, Vallinga M (1991) A two-dimensional nonequilibrium model of cascaded arc plasma flows. Phys Fluids 3:2548–2557

    Article  Google Scholar 

  39. Jenista J, Heberlein JVR, Pfender E (1997) Numerical model of the anode region of high-current electric arcs. IEEE Trans Plasma Sci 25(5):883–890

    Article  CAS  Google Scholar 

  40. Amakawa T, Jenista J, Heberlein J, Pfender E (1998) Anode-boundary-layer behaviour in a transferred, high-intensity arc. J Phys D Appl Phys 31:2826–2834

    Article  CAS  Google Scholar 

  41. Ramshaw JD, Chang CH (1996) Friction-weighted self-consistent effective binary diffusion approximation. J Non-Equilib Thermodyn 21(3):223–232

    CAS  Google Scholar 

  42. Baeva M, Uhrlandt D (2013) Plasma chemistry in the free-burning Ar arc. J Phys D Appl Phys 46:325202

    Article  Google Scholar 

  43. Baeva M, Benilov MS, Almeida NA, Uhrlandt D (2016) Novel non-equilibrium modelling of a DC electric arc in argon. J Phys D Appl Phys 49:245205

    Article  Google Scholar 

  44. Zhdanov VM (2002) Transport phenomena in multicomponent plasma. Taylor and Francis, London

    Google Scholar 

  45. Ramshaw JD (1990) Self-consistent effective binary diffusion in multicomponent gas mixtures. J Non-Equilib Thermodyn 15(3):295–300

    Article  CAS  Google Scholar 

  46. Ramshaw JD, Chang CH (1993) Ambipolar diffusion in two-temperature multicomponent plasmas. Plasma Chem Plasma Process 13(3):489–498

    Article  CAS  Google Scholar 

  47. Almeida NA, Benilov MS, Naidis GV (2008) Unified modelling of near-cathode plasma layers in high-pressure arc discharges. J Phys D Appl Phys 41:245201

    Article  Google Scholar 

  48. Trelles JP (2014) Electrode patterns in arc discharge simulations: effect of anode cooling. Plasma Sources Sci Technol 23:054002

    Article  Google Scholar 

  49. Murphy AB (2015) A perspective on arc welding research: the importance of the arc, unresolved questions and future directions. Plasma Chem Plasma Process 35:471–489

    Article  CAS  Google Scholar 

  50. Mentel J, Heberlein J (2010) The anode region of low current arcs in high intensity discharge lamps. J Phys D Appl Phys 43:023002

    Article  Google Scholar 

  51. Shkol’nik SM (2011) Anode phenomena in arc discharges. Plasma Sources Sci Technol 20:013001

    Article  Google Scholar 

  52. Redwitz M, Dabringhausen L, Lichtenberg S, Langenscheidt O, Heberlein J, Mentel J (2006) Arc attachment at HID anodes: measurements and interpretation. J Phys D Appl Phys 39:2160–2179

    Article  CAS  Google Scholar 

  53. Cao M, Proulx P, Boulos M, Mostaghimi J (1994) Mathematical modelling of high-power transferred arcs. J Appl Phys 76:7757–7767

    Article  CAS  Google Scholar 

  54. Bade WL, Yos JM (1963) Theoretical and experimental investigation of arc plasma-generation technology, Part II, vol 1, Report No. ASD-TDR-62-729, Avco Corporation, Washington, Mass, USA

  55. Benilov MS, Marotta A (1995) A model of the cathode region of atmospheric pressure arcs. J Phys D Appl Phys 28(9):1869–1882

    Article  CAS  Google Scholar 

  56. Benilov MS (2000) Theory of nonlinear surface heating. Phys Scr T84:22–26

    Article  CAS  Google Scholar 

  57. Dabringhausen L, Langenscheidt O, Redwitz M, Mentel J (2005) Different modes of arc attachment at HID cathodes: simulation and comparison with measurements. J Phys D Appl Phys 38:3128–3142

    Article  CAS  Google Scholar 

  58. Bergner A, Westermeier M, Ruhrmann C, Awakowicz Mentel J (2011) Temperature measurements at thoriated tungsten electrodes in a model lamp and their interpretation by numerical simulation. J Phys D Appl Phys 44:505203

    Article  Google Scholar 

  59. Benilov MS, Benilova LG, Li HP, Wu GQ (2012) Sheath and arc-columns voltages in high-pressure arc discharges. J Phys D Appl Phys 45:355201

    Article  Google Scholar 

  60. Pekker L, Hussary N (2014) Effect of boundary conditions on the heat flux to the wall in two-temperature modelling of “thermal” plasmas. J Phys D Appl Phys 47:445202

    Article  Google Scholar 

  61. Pekker L, Hussary N (2015) Boundary conditions at the walls with thermionic electron emission in two-temperature modeling of ‘thermal” plasmas. Phys Plasmas 22:083510

    Article  Google Scholar 

  62. Godyak VA, Sternberg N (1990) Smooth plasma-sheath transition in a hydrodynamic model. IEEE Trans Plasma Sci 18(1):159–168

    Article  Google Scholar 

  63. Incropera FP, DeWitt DP, Bergmann TL, Lavine AS (2007) Fundamentals of heat and mass transfer. Wiley, New York

    Google Scholar 

  64. Smid I, Akiba M, Araki M, Suzuki S, Satoh K (1993) Material and design considerations for the carbon armored ITER divertor. Report JAERI-M, pp 93–149

  65. Blanket, Shield Design and Material Database (1991) ITER Documentation Series No 29. IAEA, Vienna

    Google Scholar 

  66. Touloukian YS, Powell RW, Ho CY, Clemens PG (1970) Thermal conductivity. Metallic elements and alloys (Thermophysical Properties of Matter vol 1). IFI/Plenum, NY

    Google Scholar 

  67. Lassner E, Schubert W-D (1999) Tungsten: properties, chemistry, technology of the element. Alloys, and chemical compounds. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  68. Shirvan AJ, Choquet I, Nilsson H (2016) Effect of cathode model on arc attachment for short high-intensity arc on a refractory cathode. J Phys D Appl Phys 49:485201

    Article  Google Scholar 

  69. CFD-ACE+ (ESI Group, Paris, France)

  70. Bini R, Monno M, Boulos M (2006) Numerical and experimental study of transferred arcs in argon. J Phys D Appl Phys 39:3253–3266

    Article  CAS  Google Scholar 

  71. Tashiro S, Tanaka M (2008) Numerical and experimental study of transferred arcs in argon. Trans JWRI 37(1):7–11

    CAS  Google Scholar 

  72. Fomenko VS (1981) Electron emission properties of materials. Naukova Dumka, Kiev

    Google Scholar 

  73. Murphy AB (2010) The effects of metal vapour in arc welding. J Phys D Appl Phys 43:434001

    Article  Google Scholar 

  74. Baeva M, Gorchakov S, Uhrlandt D, Weltmann K-D (2014) Simulation analysis of the electrode-arc interaction in free burning arcs. In: Proceedings of gas discharges and their applications, Orleans, France, 6–11 July, vol 1, pp 211–214

  75. Mitrofanov NK, Shkol’nik SM (2007) Two forms of attachment of an atmospheric-pressure direct-current arc in argon to a thermionic cathode. Tech Phys 52(6):711–720

    Article  CAS  Google Scholar 

  76. Baeva M, Uhrlandt D, Benilov SM, Cunha MD (2013) Comparing two non-equilibrium approaches to modelling of a free-burning arc. Plasma Sources Sci Technol 22:065017

    Article  Google Scholar 

  77. Baeva M (2016) Thermal and chemical nonequilibrium effects in free-burning arcs. Plasma Chem Plasma Process 36:151–167

    Article  CAS  Google Scholar 

  78. Dinulescu HA, Pfender E (1980) Analysis of the anode boundary layer of high intensity arcs. J Appl Phys 51(6):3149–3157

    Article  Google Scholar 

  79. Sansonnens L, Haidar J, Lowke JJ (2000) Prediction of properties of free burning arcs including effects of ambipolar diffusion. J Phys D Appl Phys 33:148–157

    Article  CAS  Google Scholar 

  80. Baeva M, Siewert E, Uhrlandt D (2016) Electric field and voltage of TIG arcs from non-equilibrium modeling and experiment. In: Proceedings of gas discharges and their applications, Nagoya, Japan, 11–16 Sept., vol 1, pp 73–76

  81. Baeva M, Uhrlandt D (2016) Analysis of the power budget of TIG arc based on non-equilibrium model. Paper given at Study Group 212 of the 2016 Annual Congress of the International Institute of Welding, 11–13 July 2016, Melbourn, Australia

  82. Uhrlandt D, Baeva M, Pipa AV, Kozakov R, Gött G (2015) Cathode fall of TIG arcs from a non-equilibrium model. Weld World 59(1):127–135

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the DFG (German Science Foundation) under Grant UH106/11-1. The author is grateful to Dr. M. D. Cunha of Universidade da Madeira, Portugal, for kindly performing the simulation with the model of nonlinear surface heating, shown in Fig. 5, and making the results available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Baeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baeva, M. Non-equilibrium Modeling of Tungsten-Inert Gas Arcs. Plasma Chem Plasma Process 37, 341–370 (2017). https://doi.org/10.1007/s11090-017-9785-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9785-y

Keywords

Navigation