Skip to main content
Log in

Spectroscopic Diagnostics of Enhanced Magnetron and Mesh Separation Effects in Cyclonic Atmospheric Pressure Plasma Surface Modification of Polyethylene Terephthalate

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The correlation of plasma surface modification consequence and the electron characteristics in plasma state with the enhanced magnetron source and metal mesh screen are studied by cyclonic-atmospheric-pressure plasma on polyethylene terephthalate (PET) surface. The contact angle measurement is employed to examine the plasma modified PET surface hydrophilicity. Optical emission spectroscopy is used to detect the electronic excitation temperature and electron density in cyclonic atmospheric pressure plasma. The electronic excitation temperature and the electron density are measured as the operational conditions of adding magnetron source and metal mesh separation. Boltzmann plot method is employed to estimate the electronic excitation temperature whereas electron density measurement by the Voigt profile. The results show that both electronic excitation temperature and electron density have similar trend i.e., both increasing with the enhanced magnetron source while decreasing trend is observed with passing through the metal mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kogelschatz U (2003) Plasma Chem Plasma Process 23(1):1–46

    Article  CAS  Google Scholar 

  2. Ritts AC, Liu CH, Yu QS (2011) Thin Solid Films 519:4289–4824

    Article  Google Scholar 

  3. De Geyter N, Morent R, Gengembre L, Leys C, Payen E, Van Vlierberghe S, Schacht E (2008) Plasma Chem Plasma Process 28:289–298

    Article  Google Scholar 

  4. Huang C, Wu SY, Liu YC, Chang YC, Tsai CY (2011) Jpn J Appl Phys 50:01AH05-1–01AH05-5

    Article  Google Scholar 

  5. Huang C, Lin HH, Li C (2015) Plasma Chem Plasma Process 35:1015–1028

    Article  CAS  Google Scholar 

  6. Tseng YC, Li L, Huang C (2017) Jpn J Appl Phys 56:01AF03-1–01AF03-01-7

    Google Scholar 

  7. Hsu YW, Yang YJ, Wu CY, Hsu CC (2010) Plasma Chem Plasma Process 30(3):363–372

    Article  CAS  Google Scholar 

  8. Francke KP, Rudolph R, Miessner H (2003) Plasma Chem Plasma Process 23(1):47–57

    Article  CAS  Google Scholar 

  9. Gilliam M, Yu QS (2007) J Appl Polym Sci 105:360–372

    Article  CAS  Google Scholar 

  10. Owens DK, Wendt RC (1969) J Appl Polym Sci 13:1741–1747

    Article  CAS  Google Scholar 

  11. Chang YJ, Lin CH, Huang C (2016) Jpn J Appl Phys 55:01AB05-1–01AB05-6

    Google Scholar 

  12. Moravej M, Yang X, Barankin M, Penelon J, Babayan SE, Hicks RF (2006) Plasma Sources Sci Technol 15(2):204–210

    Article  CAS  Google Scholar 

  13. Tsai JH, Hsu CM, Hsu CC (2013) Plasma Chem Plasma Process 33(6):1121–1135

    Article  CAS  Google Scholar 

  14. Vacher D, Faure G, Andre P (2001) Spectrochim Acta B 56:309–330

    Article  Google Scholar 

  15. Hao Z, Ji S, Liu H, Song Y (2014) IEEE Trans Plasma Sci 42:824–832

    Article  CAS  Google Scholar 

  16. NIST Atomic Spectra Database. http://physics.nist.gov/asd

  17. Qian MY, Ren CS, Wang DZ, Fan QQ, Nie QY, Wen XQ, Zhang JL (2012) IEEE Trans Plasma Sci 40:1134–1141

    Article  CAS  Google Scholar 

  18. Liu W, Bernhardt J, Théberge F, Chin SL, Châteauneuf M, Dubois J (2007) J Appl Phys 102:033111–1–033111–4

    Google Scholar 

  19. Yubero C, Rodero A, Dimitrijevic MS, Gamero A, García MC (2017) Spectrochim Acta B 129:14–20

    Article  CAS  Google Scholar 

  20. Gallagher TF (1999) Phys Rep 316:339–401

    Article  Google Scholar 

  21. Ouyang Z, Surla V, Cho TS, Ruzic DN (2012) IEEE Trans Plasma Sci 40:3476–3481

    Article  CAS  Google Scholar 

  22. Gomes AM, Saloum S, Sarrette JP (2004) Plasma Chem Plasma Process 24(2):239–259

    Article  CAS  Google Scholar 

  23. Yubero C, Rodero A, Dimitrijevic MS, Gamero A, García MC (2017) Spectrochim Acta Part B 129:14–20

    Article  CAS  Google Scholar 

  24. Yu L, Pierrot L, Laux CO, Kruger CH (2001) Plasma Chem Plasma Process 21:483–503

    Article  CAS  Google Scholar 

  25. Hong YJ, Kwon GC, Cho G, Shin HM, Choi EH (2010) IEEE Trans Plasma Sci 38:1111–1116

    Article  CAS  Google Scholar 

  26. Bakshi V, Kearney RJ (1989) J Phys Chem Ref Data 41:369–376

    CAS  Google Scholar 

  27. Capitelli M, Ferreira CM, Gordiets BF, Osipov R (2000) Plasma Kinetics in Atmospheric Gases. Springer, Berlin

    Book  Google Scholar 

  28. Yalin AP, Laux CO, Kruger CH, Zare RN (2002) Plasma Sources Sci. Technol. 11248–53

  29. Gomes AM, Bacri J, Sarrette JP, Salon J (1992) J Anal At Spectrosc 7:1103–1109

    Article  CAS  Google Scholar 

  30. Nam SH, Kim YJ (2001) Bull Korean Chem Soc 22–8:827–832

    Google Scholar 

  31. Yasuda H (2005) Luminous chemical vapor deposition and interface engineering. Marcel Dekker, NewYork

    Google Scholar 

  32. Gilliam M, Farhat S, Zand A, Magyar M, Garner G (2014) Plasma Process Polym 11:1037–1043

    Article  CAS  Google Scholar 

  33. Morent R, Geyer ND, Vlierberghe SV, Beaurain A, Dubruel P, Payen E (2011) Prog Org Coat 70:336–341

    Article  CAS  Google Scholar 

  34. Gonzalez E II, Barankin MD, Guschl PC, Hicks RF (2008) Langmuir 24:12636–12643

    Article  CAS  Google Scholar 

  35. Gilliam M, Ritts A, Yu QS (2010) J Appl Polym Sci 118(2):805–817

    CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support of the Ministry of Science and Technology (MOST) under Grants 105-2221-E-155-073 and 106-2221-E-155-051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HL., Huang, C. Spectroscopic Diagnostics of Enhanced Magnetron and Mesh Separation Effects in Cyclonic Atmospheric Pressure Plasma Surface Modification of Polyethylene Terephthalate. Plasma Chem Plasma Process 37, 1587–1605 (2017). https://doi.org/10.1007/s11090-017-9839-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9839-1

Keywords

Navigation