Skip to main content
Log in

Characterization of Gaseous Plasma Sustained in Mixtures of HMDSO and O2 in an Industrial-Scale Reactor

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Optical emission spectroscopy and mass spectrometry was used to characterize gaseous plasma in an industrial reactor of volume 5 m3 during deposition of protective coatings. Plasma was created in mixtures of hexamethyldisiloxane (HMDSO) and oxygen at the powers between 1 and 8 kW. The plasma density was somehow below 1014 m−3. The flows of both gases were varied up to 200 sccm while the effective pumping speed was adjusted by changing the roots pump rotation speed between 250 and 4000 rpm. At such conditions the HMDSO was only partially dissociated to fragments. The behaviour of optical emission lines and mass ion currents was well correlated indicating that even one single technique was sufficient to monitor the behaviour of plasma at various discharge conditions. The optical emission spectroscopy as a simple and economic method is therefore suitable for controlling key processing parameters in such a plasma reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Pandiyaraj KN, Kumar AA, Ramkumar MC, Kumar SU, Gopinath P, Cools P, De Geyter N, Morent R, Bah M, Shah SI et al (2017) Effect of processing parameters on the deposition of SiOx-like coatings on the surface of polypropylene films using glow discharge plasma assisted polymerization for tissue engineering applications. Vacuum 143:412–422. https://doi.org/10.1016/j.vacuum.2017.06.046

    Article  CAS  Google Scholar 

  2. Bian Z, Wang X, Sun Y, Chen Q (2017) Optical Emission Spectroscopy Diagnostics of HMDSO/O2 Magnetized Plasma. In: Zhao P, Ouyang Y, Xu M, Yang L, Ouyang Y (eds) Advanced graphic communications and media technologies, vol 417. PPMT 2016. Lecture notes in electrical engineering. Springer, Singapore, pp 1115–1122

    Chapter  Google Scholar 

  3. Farag ZR, Kruger S, Hidde G, Schimanski A, Jager C, Friedrich J (2013) Deposition of thick polymer or inorganic layers with flame-retardant properties by combination of plasma and spray processes. Surf Coat Technol 228:266–274. https://doi.org/10.1016/j.surfcoat.2013.04.039

    Article  CAS  Google Scholar 

  4. Begou T, Beche B, Goullet A, Landesman JP, Granier A, Cardinaud C, Gaviot E, Camberlein L, Grossard N, Jezequel G et al (2007) First developments for photonics integrated on plasma-polymer-HMDSO: single-mode TE00-TM00 straight waveguides. Opt Mater 30:657–661. https://doi.org/10.1016/j.optmat.2007.02.049

    Article  CAS  Google Scholar 

  5. Hoppe C, Mitschker F, Giner I, de los Arcos T, Awakowicz P, Grundmeier G (2017) Influence of organic surface chemistry on the nucleation of plasma deposited SiOx films. J Phys D Appl Phys 50:204002204002. https://doi.org/10.1088/1361-6463/aa69e5

    Article  CAS  Google Scholar 

  6. Ricci M, Dorier JL, Hollenstein C, Fayet P (2011) Influence of argon and nitrogen admixture in HMDSO/O-2 plasmas onto powder formation. Plasma Process Polym 8:108–117. https://doi.org/10.1002/ppap.201000052

    Article  CAS  Google Scholar 

  7. Magni D, Deschenaux C, Hollenstein C, Creatore A, Fayet P (2001) Oxygen diluted hexamethyldisiloxane plasmas investigated by means of in situ infrared absorption spectroscopy and mass spectrometry. J Phys D Appl Phys 34:87–94. https://doi.org/10.1088/0022-3727/34/1/315

    Article  CAS  Google Scholar 

  8. Despax B, Gaboriau F, Caquineau H, Makasheva K (2016) Influence of the temporal variations of plasma composition on the cyclic formation of dust in hexamethyldisiloxane-argon radiofrequency discharges: analysis by time-resolved mass spectrometry. AIP Adv 6:105111. https://doi.org/10.1063/1.4966254

    Article  CAS  Google Scholar 

  9. Alexander MR, Jones FR, Short RD (1997) Mass spectral investigation of the radio-frequency plasma deposition of hexamethyldisiloxane. J Phys Chem B 101:3614–3619. https://doi.org/10.1021/jp970663b

    Article  CAS  Google Scholar 

  10. Garofano V, Stafford L, Despax B, Clergereaux R, Makasheva K (2015) Cyclic evolution of the electron temperature and density in dusty low-pressure radio frequency plasmas with pulsed injection of hexamethyldisiloxane. Appl Phys Lett 107:183104. https://doi.org/10.1063/1.4935030

    Article  CAS  Google Scholar 

  11. Belmonte T, Gries T, Cardoso RP, Arnoult G, Kosior F, Henrion G (2011) Chemical vapour deposition enhanced by atmospheric microwave plasmas: a large-scale industrial process or the next nanomanufacturing tool? Plasma Sources Sci Technol 20:024004. https://doi.org/10.1088/0963-0252/20/2/024004

    Article  CAS  Google Scholar 

  12. Vartiainen J, Malm T (2016) Surface hydrophobization of CNF films by roll-to-roll HMDSO plasma deposition. J Coat Technol Res 13:1145–1149. https://doi.org/10.1007/s11998-016-9833-1

    Article  CAS  Google Scholar 

  13. Corbella C, Bialuch I, Kleinschmidt M, Bewilogua K (2009) Up-scaling the production of modified a-C:H coatings in the framework of plasma polymerization processes. Solid State Sci 11:1768–1772. https://doi.org/10.1016/j.solidstatesciences.2008.11.010

    Article  CAS  Google Scholar 

  14. Corbella C, Bialuch I, Kleinschmidt M, Bewilogua K (2008) Modified DLC coatings prepared in a large-scale reactor by dual microwave/pulsed-DC plasma-activated chemical vapour deposition. Thin Solid Films 517:1125–1130. https://doi.org/10.1016/j.tsf.2008.07.017

    Article  CAS  Google Scholar 

  15. Mateev E, Zhelyazkov I (1999) Macroscopic model for the energy balance of an asymmetric capacitively coupled rf discharge. J Phys D Appl Phys 32:3019–3024. https://doi.org/10.1088/0022-3727/32/23/307

    Article  CAS  Google Scholar 

  16. Ho TS, Charles C, Boswell R (2018) Redefinition of the self-bias voltage in a dielectrically shielded thin sheath RF discharge. J Appl Phys 123:193301. https://doi.org/10.1063/1.5023076

    Article  CAS  Google Scholar 

  17. Gorjanc M (2014) Mozetic M. Modification of fibrous polymers by gaseous plasma: principles, techniques and applications. LAP Lambert Academic Publishing, Saarbrücken, p 152

    Google Scholar 

  18. Mackay KK, Freund JB, Johnson HT (2016) Hydrogen recombination rates on silica from atomic-scale calculations. J Phys Chem C 120:24137–24147. https://doi.org/10.1021/acs.jpcc.6b07365

    Article  CAS  Google Scholar 

  19. Mozetic M, Drobnic M, Zalar A (1999) Recombination of neutral hydrogen atoms on AISI 304 stainless steel surface. Appl Surf Sci 144–45:399–403. https://doi.org/10.1016/s0169-4332(98)00830-7

    Article  Google Scholar 

  20. Ropcke J, Revalde G, Osiac M, Li K, Meichsner J (2002) Tunable diode laser absorption studies of hydrocarbons in RF plasmas containing hexamethyldisiloxane. Plasma Chem Plasma Process 22:137–157

    Article  CAS  Google Scholar 

  21. Nave ASC, Mitschker F, Awakowicz P, Ropcke J (2016) Spectroscopic studies of microwave plasmas containing hexamethyldisiloxane. J Phys D Appl Phys 49:395206. https://doi.org/10.1088/0022-3727/49/39/395206

    Article  CAS  Google Scholar 

  22. Kregar Z, Biscan M, Milosevic S, Mozetic M, Vesel A (2012) Interaction of argon, hydrogen and oxygen plasma early afterglow with polyvinyl chloride (PVC) materials. Plasma Process Polym 9:1020–1027. https://doi.org/10.1002/ppap.201200062

    Article  CAS  Google Scholar 

  23. Laporta V, Tennyson J, Celiberto R (2016) Carbon monoxide dissociative attachment and resonant dissociation by electron-impact. Plasma Sources Sci Technol 25:01LT04. https://doi.org/10.1088/0963-0252/25/1/01lt04

    Article  Google Scholar 

  24. Moulane Y, Mezei JZ, Laporta V, Jehin E, Benkhaldoun Z, Schneider IF (2018) Reactive collision of electrons with CO+ in cometary coma. Astron Astrophys 615:A53. https://doi.org/10.1051/0004-6361/201832912

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Slovenian Research Agency (research core funding No. P2-0082—Thin film structures and plasma surface engineering, as well as project No. L2-8179—Evaluation of the range of plasma parameters suitable for nanostructuring of polymers on industrial scale).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rok Zaplotnik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gosar, Ž., Kovač, J., Mozetič, M. et al. Characterization of Gaseous Plasma Sustained in Mixtures of HMDSO and O2 in an Industrial-Scale Reactor. Plasma Chem Plasma Process 40, 25–42 (2020). https://doi.org/10.1007/s11090-019-10026-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-019-10026-5

Keywords

Navigation