Skip to main content
Log in

Natural Deep Eutectic Solvents as Alternatives for Extracting Phlorotannins from Brown Algae

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Natural deep eutectic solvents (NADES) are promising green solvents for extracting biologically active compounds from plant raw material. This is the first study in which NADES were used to extract phlorotannins from brown algae Fucus vesiculosus L. and Ascophyllum nodosum (L.) Le Jolis. The extraction efficiency of polyphenols was evaluated using 10 NADES based on choline chloride, lactic acid, betaine, and glucose in various mole ratios. The effect of H2O in aqueous solutions of NADES on extraction of phlorotannins was studied. Algae were extracted by maceration for 120 min at 50°C with a 1:5 raw-material:extractant ratio. Phlorotannins were quantified by spectrophotometry using the Folin–Ciocalteu method. The maximum extraction of phlorotannins (60 – 72%) was achieved using aqueous NADES solutions (50 – 70%) based on choline chloride with added lactic or malic acid and also on malic acid and betaine. The NADES had efficiencies comparable to Me2CO and EtOH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. K. L. Van Alstyne, J. J. McCarthy, C. L. Hustead, and L. J. Kearns, J. Phycol., 35(3), 483 – 492 (1999).

    Article  Google Scholar 

  2. T. Shibata, K. Nagayama, R. Tanaka, et al., J. Appl. Phycol., 15(1), 61 – 66 (2003).

    Article  CAS  Google Scholar 

  3. S. H. Eom, Y. M. Kim, and S. K. Kim, Food Chem. Toxicol., 50(9), 3251 – 3255 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. R. Pallela, Y. Na-Young, and S. K. Kim, Mar. Drugs, 8(4), 1189 – 1202 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. N. Turkmen, F. Sari, and Y. S. Velioglu, Food Chem., 99, No. 4, 835 – 841 (2006).

    Article  CAS  Google Scholar 

  6. A. P. Abbott, D. Boothby, G. Capper, et al., J. Am. Chem. Soc., 126, 9142 – 9147 (2004).

    Article  CAS  Google Scholar 

  7. M. Francisco, A. van den Bruinhorst, and M. C. Kroon, Angew. Chem., 52, 3074 – 3085 (2013).

    Article  CAS  Google Scholar 

  8. K. Radosevic, N. Curko, V. G. Srcek, and M. C. Bubalo, LWT – Food Sci. Technol., 73, 45 – 51 (2016).

    Article  CAS  Google Scholar 

  9. M. W. Nam, J. Zhao, M. S. Lee, et al., Green Chem., 17, 1718 – 1727 (2015).

    Article  CAS  Google Scholar 

  10. E. A. Gall, F. Lelchat, M. Hupel, et al., in: Natural Products from Marine Algae: Methods and Protocols, Methods in Molecular Biology, D. B. Stengel and S. Connan (eds.), Springer Science+Business Media, New York (2015), pp. 131 – 143.

    Chapter  Google Scholar 

  11. GPM. 1.2.1.0010.15, Mass loss on drying; http: //193.232.7.120/feml/clinical ref/pharmacopoeia 1/HTML/#556

  12. M. Ruesgas-Ramon, M. C. Figueroa-Espinoza, and E. Durand, J. Agric. Food Chem., 65(18), 3591 – 3601 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Y. Dai, J. van Spronsen, G.-J.Witkamp, et al., Anal. Chim. Acta, 766, 61 – 68 (2013).

    Article  CAS  Google Scholar 

  14. A. Paiva, R. Craveiro, I. Aroso, et al., ACS Sustainable Chem. Eng., 2, 1063 – 1071 (2014).

    Article  CAS  Google Scholar 

  15. W. Bi, M. Tian, and K. H. Row, J. Chromatogr. A, 1285, 22 – 30 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. B. Karakashov, S. Grigorakis, S. Loupassaki, and D. P. Makris, J. Appl. Res. Med. Aromat. Plants, 2, 1 – 8 (2015).

    Google Scholar 

  17. K. L. J. Van Alstyne, Chem. Ecol., 21, 45 – 58 (1995).

    Article  Google Scholar 

  18. A. J. Steevensz, S. L. Mackinnon, R. Hankinson, et al., Phytochem. Anal., 23, 547 – 553 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. S. Santos, C. S. D. Oliveira, S. S. Trindade, et al., J. Appl. Phycol., 28, 3151 – 3158 (2016).

    Article  CAS  Google Scholar 

  20. Y. Li, X. Fu, D. Duan, et al., Mar. Drugs, 15, 49 (2017); doi: 10.3390 / md15020049 (2017).

  21. E. D. Obluchinskaya, Vestn. Mosk. Gos. Tekh. Univ., 21(3), 395 – 401 (2018); doi: 10.21443 / 1560-9278-2018-21-3-395-401.

  22. S. Bajkacz and J. Adamek, Food Anal. Methods, 11, 1330 – 1344 (2018).

    Article  Google Scholar 

  23. B. Tang and K. H. Row, Monatsh. Chem., 144(10), 1427 – 1454 (2013).

    Article  CAS  Google Scholar 

  24. A. Pandey, R. Rai, M. Pal, and S. Pandey, Phys. Chem. Chem. Phys., 16, No. 4, 1559 – 1568 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Y. Dai, G.-J. Witkamp, R. Verpoorte, and Y. H. Choi, Anal. Chem., 85, 6272 – 6278 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. H. Zhang, B. Tang, and K. Row, Chem. Res. Chin. Univ., 30, 37 – 41 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was sponsored by a State Task of MMBI, KSC, RAS, Ministry of Education and Science of the RF (State Reg. No. 01201453843). NADES syntheses were supported by RFBR Grant No. 17-44-510487-reg sever a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Obluchinskaya.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 53, No. 3, pp. 45 – 49, March, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obluchinskaya, E.D., Daurtseva, A.V., Pozharitskaya, O.N. et al. Natural Deep Eutectic Solvents as Alternatives for Extracting Phlorotannins from Brown Algae. Pharm Chem J 53, 243–247 (2019). https://doi.org/10.1007/s11094-019-01987-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-019-01987-0

Keywords

Navigation