Skip to main content

Advertisement

Log in

Functionalized Micellar Systems for Cancer Targeted Drug Delivery

  • Review Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Abstract

Polymer micelles are rapidly becoming a powerful nanomedicine platform for cancer therapeutic applications due to their small size (10–100 nm), in vivo stability, ability to solubilize water insoluble anticancer drugs, and prolonged blood circulation times. Recent data from clinical trials with three micelle formulations have highlighted these and other pharmacokinetic advantages with reduced systemic toxicity and patient morbidity compared to conventional drug formulation. While the initial anti-tumor efficacy of these systems seems promising, a strong research impetus has been placed on micelle functionalization in order to achieve tumor targeting and site-specific drug release, with the hope of reaching a more pronounced tumor response. Hence, the purpose of this review is to draw attention to the new developments of multi-functional polymer micelles for cancer therapy with special focus on tumor targeting and controlled drug release strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Danson, D. Ferry, V. Alakhov, J. Margison, D. Kerr, D. Jowle, M. Brampton, G. Halbert, and M. Ranson. Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br. J. Cancer 90:2085–2091 (2004).

    PubMed  CAS  Google Scholar 

  2. Y. Matsumura, T. Hamaguchi, T. Ura, K. Muro, Y. Yamada, Y. Shimada, K. Shirao, T. Okusaka, H. Ueno, M. Ikeda, and N. Watanabe. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br. J. Cancer 91:1775–1781 (2004).

    Article  PubMed  CAS  Google Scholar 

  3. T. Y. Kim, D. W. Kim, J. Y. Chung, S. G. Shin, S. C. Kim, D. S. Heo, N. K. Kim, and Y. J. Bang. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin. Cancer Res. 10:3708–3716 (2004).

    Article  PubMed  CAS  Google Scholar 

  4. Y. Kakizawa and K. Kataoka. Block copolymer micelles for delivery of gene and related compounds. Adv. Drug Deliv. Rev. 54:203–222 (2002).

    Article  PubMed  CAS  Google Scholar 

  5. V. P. Torchilin. Structure and design of polymeric surfactant-based drug delivery systems. J. Control. Release 73:137–172 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. M. Jones and J. Leroux. Polymeric micelles—a new generation of colloidal drug carriers. Eur. J. Pharm. Biopharm. 48:101–111 (1999).

    Article  PubMed  CAS  Google Scholar 

  7. A. V. Kabanov, P. Lemieux, S. Vinogradov, and V. Alakhov. Pluronic((R)) block copolymers: novel functional molecules for gene therapy. Adv. Drug Deliv. Rev. 54:223–233 (2002).

    Article  PubMed  CAS  Google Scholar 

  8. G. S. Kwon and K. Kataoka. Block-Copolymer Micelles as Long-Circulating Drug Vehicles. Adv. Drug Deliv. Rev. 16:295–309 (1995).

    Article  CAS  Google Scholar 

  9. G. S. Kwon. Polymeric micelles for delivery of poorly water-soluble compounds. Crit. Rev. Ther. Drug Carr. Syst. 20:357–403 (2003).

    Article  CAS  Google Scholar 

  10. V. P. Torchilin. Block copolymer micelles as a solution for drug delivery problems. Expert Opin. Ther. Pat. 15:63–75 (2005).

    Article  CAS  Google Scholar 

  11. V. P. Torchilin. Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol. Life Sci. 61:2549–2559 (2004).

    Article  PubMed  CAS  Google Scholar 

  12. G. Gaucher, M. H. Dufresne, V. P. Sant, N. Kang, D. Maysinger, and J. C. Leroux. Block copolymer micelles: preparation, characterization and application in drug delivery. J. Control. Release 109:169–188 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. V. P. Torchilin. Micellar nanocarriers: pharmaceutical perspectives. Pharm. Res. 24:1–16 (2007).

    Article  PubMed  CAS  Google Scholar 

  14. A. Choucair and A. Eisenberg. Control of amphiphilic block copolymer morphologies using solution conditions. Eur. Phys. J. E 10:37–44 (2003).

    Article  CAS  Google Scholar 

  15. A. Choucair and A. Eisenberg. Interfacial solubilization of model amphiphilic molecules in block copolymer micelles. J. Am. Chem. Soc. 125:11993–12000 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. Y. S. Yu, L. F. Zhang, and A. Eisenberg. Morphogenic effect of solvent on crew-cut aggregates of apmphiphilic diblock copolymers. Macromolecules 31:1144–1154 (1998).

    Article  CAS  Google Scholar 

  17. H. W. Shen, L. F. Zhang, and A. Eisenberg. Multiple pH-induced morphological changes in aggregates of polystyrene-block-poly(4-vinylpyridine) in DMF/H2O mixtures. J. Am. Chem. Soc. 121:2728–2740 (1999).

    Article  CAS  Google Scholar 

  18. P. Dalhaimer, F. S. Bates, H. Aranda-Espinoza, and D. Discher. Synthetic cell elements from block copolymers—hydrodynamic aspects. Comptes Rendus. Physique 4:251–258 (2003).

    Article  CAS  Google Scholar 

  19. P. Dalhaimer, A. J. Engler, R. Parthasarathy, and D. E. Discher. Targeted worm micelles. Biomacromolecules 5:1714–1719 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. P. Dalhaimer, F. S. Bates, and D. E. Discher. Single molecule visualization of stable, stiffness-tunable, flow-conforming worm micelles. Macromolecules 36:6873–6877 (2003).

    Article  CAS  Google Scholar 

  21. A. Benahmed, M. Ranger, and J. C. Leroux. Novel polymeric micelles based on the amphiphilic diblock copolymer poly(N-vinyl-2-pyrrolidone)-block-poly(D,L-lactide). Pharm. Res. 18:323–328 (2001).

    Article  PubMed  CAS  Google Scholar 

  22. J. E. Chung, M. Yokoyama, T. Aoyagi, Y. Sakurai, and T. Okano. Effect of molecular architecture of hydrophobically modified poly(N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers. J. Control. Release 53:119–130 (1998).

    Article  PubMed  CAS  Google Scholar 

  23. J. E. Chung, M. Yokoyama, and T. Okano. Inner core segment design for drug delivery control of thermo-responsive polymeric micelles. J. Control. Release 65:93–103 (2000).

    Article  PubMed  CAS  Google Scholar 

  24. J. E. Chung, M. Yokoyama, M. Yamato, T. Aoyagi, Y. Sakurai, and T. Okano. Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate). J. Control. Release 62:115–127 (1999).

    Article  PubMed  CAS  Google Scholar 

  25. O. Soga, C. F. van Nostrum, M. Fens, C. J. Rijcken, R. M. Schiffelers, G. Storm, and W. E. Hennink. Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. J. Control. Release 103:341–353 (2005).

    Article  PubMed  CAS  Google Scholar 

  26. K. Kataoka, G. S. Kwon, M. Yokoyama, T. Okano, and Y. Sakurai. Block copolymer micelles as vehicles for drug delivery. J. Control. Release 24:119–132 (1993).

    Article  CAS  Google Scholar 

  27. G. S. Kwon, M. Yokoyama, T. Okano, Y. Sakurai, and K. Kataoka. Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly(ethylene oxide-aspartate) block copolymer-Adriamycin conjugates. J. Control. Release 28:334–335 (1994).

    Article  Google Scholar 

  28. H. Maeda, K. Greish, and J. Fang. The EPR effect and polymeric drugs: a paradigm shift for cancer chemotherapy in the 21st century. Polymer Therapeutics Ii: Polymers as Drugs, Conjugates and Gene Delivery Systems 193:103–121 (2006).

    CAS  Google Scholar 

  29. K. Mross, P. Maessen, W. J. van der Vijgh, H. Gall, E. Boven, and H. M. Pinedo. Pharmacokinetics and metabolism of epidoxorubicin and doxorubicin in humans. J. Clin. Oncol. 6:517–526 (1988).

    PubMed  CAS  Google Scholar 

  30. A. Gabizon, R. Catane, B. Uziely, B. Kaufman, T. Safra, R. Cohen, F. Martin, A. Huang, and Y. Barenholz. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res. 54:987–992 (1994).

    PubMed  CAS  Google Scholar 

  31. P. H. Wiernik, E. L. Schwartz, J. J. Strauman, J. P. Dutcher, R. B. Lipton, and E. Paietta. Phase I clinical and pharmacokinetic study of taxol. Cancer Res. 47:2486–2493 (1987).

    PubMed  CAS  Google Scholar 

  32. V. Weissig, K. R. Whiteman, and V. P. Torchilin. Accumulation of protein-loaded long-circulating micelles and liposomes in subcutaneous Lewis lung carcinoma in mice. Pharm. Res. 15:1552–1556 (1998).

    Article  PubMed  CAS  Google Scholar 

  33. R. L. Hong and Y. L. Tseng. Phase I and pharmacokinetic study of a stable, polyethylene-glycolated liposomal doxorubicin in patients with solid tumors: the relation between pharmacokinetic property and toxicity. Cancer 91:1826–1833 (2001).

    Article  PubMed  CAS  Google Scholar 

  34. J. Cummings and C. S. McArdle. Studies on the in vivo disposition of adriamycin in human tumours which exhibit different responses to the drug. Br. J. Cancer 53:835–838 (1986).

    PubMed  CAS  Google Scholar 

  35. D. Goren, A. T. Horowitz, D. Tzemach, M. Tarshish, S. Zalipsky, and A. Gabizon. Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clin. Cancer Res. 6:1949–1957 (2000).

    PubMed  CAS  Google Scholar 

  36. S. D. Weitman, A. G. Weinberg, L. R. Coney, V. R. Zurawski, D. S. Jennings, and B. A. Kamen. Cellular-localization of the folate receptor—potential role in drug toxicity and folate homeostasis. Cancer Res. 52:6708–6711 (1992).

    PubMed  CAS  Google Scholar 

  37. J. F. Ross, P. K. Chaudhuri, and M. Ratnam. Differential regulation of folate receptor isoforms in normal and malignant-tissues in-vivo and in established cell-lines—physiological and clinical implications. Cancer 73:2432–2443 (1994).

    Article  PubMed  CAS  Google Scholar 

  38. H. S. Yoo and T. G. Park. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J. Control. Release 96:273–283 (2004).

    Article  PubMed  CAS  Google Scholar 

  39. H. S. Yoo and T. G. Park. Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate. J. Control. Release 100:247–256 (2004).

    Article  PubMed  CAS  Google Scholar 

  40. E. K. Park, S. Y. Kim, S. B. Lee, and Y. M. Lee. Folate-conjugated methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery. J. Control. Release 109:158–168 (2005).

    Article  PubMed  CAS  Google Scholar 

  41. E. K. Park, S. B. Lee, and Y. M. Lee. Preparation and characterization of methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials 26:1053–1061 (2005).

    Article  PubMed  CAS  Google Scholar 

  42. J. A. Varner and D. A. Cheresh. Tumor angiogenesis and the role of vascular cell integrin alphavbeta3. Important Adv. Oncol. 69–87 (1996).

  43. A. Teti, S. Migliaccio, and R. Baron. The role of the alphaVbeta3 integrin in the development of osteolytic bone metastases: a pharmacological target for alternative therapy? Calcif. Tissue Int. 71:293–299 (2002).

    Article  PubMed  CAS  Google Scholar 

  44. C. Ruegg, O. Dormond, and A. Foletti. Suppression of tumor angiogenesis through the inhibition of integrin function and signaling in endothelial cells: which side to target? Endothelium 9:151–160 (2002).

    Article  PubMed  CAS  Google Scholar 

  45. J. Wermuth, S. L. Goodman, A. Jonczyk, and H. Kessler. Stereoisomerism and biological activity of the selective and superactive alpha(v)beta(3) integrin inhibitor cyclo(-RGDfV-) and its retro-inverso peptide. J. Am. Chem. Soc. 119:1328–1335 (1997).

    Article  CAS  Google Scholar 

  46. H. Kessler, B. Diefenbach, D. Finsinger, A. Geyer, M. Gurrath, S. L. Goodman, G. Holzemann, R. Haubner, A. Jonczyk, G. Muller, E. G. von Roedern, and J. Wermuth. Design of superactive and selective integrin receptor antagonists containing the RGD sequence. Lett. Pept. Sci. 2:155–160 (1995).

    Article  CAS  Google Scholar 

  47. R. Haubner, W. Schmitt, G. Holzemann, S. L. Goodman, A. Jonczyk, and H. Kessler. Cyclic RGD peptides containing beta-turn mimetics. J. Am. Chem. Soc. 118:7881–7891 (1996).

    Article  CAS  Google Scholar 

  48. R. Haubner, R. Gratias, B. Diefenbach, S. L. Goodman, A. Jonczyk, and H. Kessler. Structural and functional aspects of RGD-containing cyclic pentapeptides as highly potent and selective integrin alpha(v)beta(3) antagonists. J. Am. Chem. Soc. 118:7461–7472 (1996).

    Article  CAS  Google Scholar 

  49. S. L. Goodman, G. Holzemann, G. A. G. Sulyok, and H. Kessler. Nanomolar small molecule inhibitors for alpha v beta 6, alpha v beta 5, and alpha v beta 3 integrins. J. Med. Chem. 45:1045–1051 (2002).

    Article  PubMed  CAS  Google Scholar 

  50. P. C. Brooks, R. A. Clark, and D. A. Cheresh. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569–571 (1994).

    Article  PubMed  CAS  Google Scholar 

  51. N. Nasongkla, X. Shuai, H. Ai, B. D. Weinberg, J. Pink, D. A. Boothman, and J. M. Gao. cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angewandte Chemie-International Edition 43:6323–6327 (2004).

    Article  CAS  Google Scholar 

  52. G. Ashwelland and J. Harford. Carbohydrate-specific receptors of the liver. Ann. Rev. Biochem. 51:531–554 (1982).

    Article  Google Scholar 

  53. M. Goto, H. Yura, C. W. Chang, A. Kobayashi, T. Shinoda, A. Maeda, S. Kojima, K. Kobayashi, and T. Akaike. Lactose-carrying polystyrene as a drug carrier—investigation of body distributions to parenchymal liver-cells using I-125 labeled lactose-carrying polystyrene. J. Control. Release 28:223–233 (1994).

    Article  CAS  Google Scholar 

  54. R. W. Jansen, G. Molema, T. L. Ching, R. Oosting, G. Harms, F. Moolenaar, M. J. Hardonk, and D. K. Meijer. Hepatic endocytosis of various types of mannose-terminated albumins. What is important, sugar recognition, net charge, or the combination of these features. J. Biol. Chem. 266:3343–3348 (1991).

    PubMed  CAS  Google Scholar 

  55. J. Kopacek and R. Duncan. Targetable polymeric prodrugs. J. Control. Release 6:315–327 (1987).

    Article  Google Scholar 

  56. J. R. Wands and H. E. Blum. Primary hepatocellular carcinoma. N. Engl. J. Med. 325:729–731 (1991).

    Article  PubMed  CAS  Google Scholar 

  57. Y. I. Jeong, S. J. Seo, I. K. Park, H. C. Lee, I. C. Kang, T. Akaike, and C. S. Cho. Cellular recognition of paclitaxel-loaded polymeric nanoparticles composed of poly(gamma-benzyl L-glutamate) and poly(ethylene glycol) diblock copolymer endcapped with galactose moiety. Int. J. Pharm. 296:151–161 (2005).

    Article  PubMed  CAS  Google Scholar 

  58. K. Yasugi, T. Nakamura, Y. Nagasaki, M. Kato, and K. Kataoka. Sugar-installed polymer micelles: Synthesis and micellization of poly(ethylene glycol)-poly(D,L-lactide) block copolymers having sugar groups at the PEG chain end. Macromolecules 32:8024–8032 (1999).

    Article  CAS  Google Scholar 

  59. Y. Nagasaki, K. Yasugi, Y. Yamamoto, A. Harada, and K. Kataoka. Sugar-installed block copolymer micelles: their preparation and specific interaction with lectin molecules. Biomacromolecules 2:1067–1070 (2001).

    Article  PubMed  CAS  Google Scholar 

  60. E. Jule, Y. Nagasaki, and K. Kataoka. Surface plasmon resonance study on the interaction between lactose-installed poly(ethylene glycol)-poly(D,L-lactide) block copolymer micelles and lectins immobilized on a gold surface. Langmuir 18:10334–10339 (2002).

    Article  CAS  Google Scholar 

  61. E. Jule, Y. Nagasaki, and K. Kataoka. Lactose-installed poly(ethylene glycol)-poly(d,l-lactide) block copolymer micelles exhibit fast-rate binding and high affinity toward a protein bed simulating a cell surface. A surface plasmon resonance study. Bioconjug. Chem. 14:177–186 (2003).

    Article  PubMed  CAS  Google Scholar 

  62. A. V. Kabanov, V. P. Chekhonin, V. Y. Alakhov, E. V. Batrakova, A. S. Lebedev, N. S. Meliknubarov, S. A. Arzhakov, A. V. Levashov, G. V. Morozov, E. S. Severin, and V. A. Kabanov. The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles—micelles as microcontainers for drug targeting. FEBS Lett. 258:343–345 (1989).

    Article  PubMed  CAS  Google Scholar 

  63. V. P. Torchilin, A. N. Lukyanov, Z. Gao, and B. Papahadjopoulos-Sternberg. Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc. Natl. Acad. Sci. USA. 100:6039–6044 (2003).

    Article  PubMed  CAS  Google Scholar 

  64. C. Tuerkand and L. Gold. Systematic evolution of ligands by exponential enrichment—Rna Ligands to Bacteriophage-T4 DNA-Polymerase. Science 249:505–510 (1990).

    Article  Google Scholar 

  65. A. D. Ellingtonand and J. W. Szostak. Invitro Selection of Rna Molecules That Bind Specific Ligands. Nature 346:818–822 (1990).

    Article  Google Scholar 

  66. O. C. Farokhzad, S. Y. Jon, A. Khadelmhosseini, T. N. T. Tran, D. A. LaVan, and R. Langer. Nanopartide-aptamer bioconjugates: A new approach for targeting prostate cancer cells. Cancer Res. 64:7668–7672 (2004).

    Article  PubMed  CAS  Google Scholar 

  67. O. C. Farokhzad, J. J. Cheng, B. A. Teply, I. Sherifi, S. Jon, P. W. Kantoff, J. P. Richie, and R. Langer. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. U. S. A. 103:6315–6320 (2006).

    Article  PubMed  CAS  Google Scholar 

  68. J. D. Hood, M. Bednarski, R. Frausto, S. Guccione, R. A. Reisfeld, R. Xiang, and D. A. Cheresh. Tumor regression by targeted gene delivery to the neovasculature. Science 296:2404–2407 (2002).

    Article  PubMed  CAS  Google Scholar 

  69. T. J. Wickham. Ligand-directed targeting of genes to the site of disease. Nat. Med. 9:135–139 (2003).

    Article  PubMed  CAS  Google Scholar 

  70. K. Kunath, T. Merdan, O. Hegener, H. Haberlein, and T. Kissel. Integrin targeting using RGD-PEI conjugates for in vitro gene transfer. J. Gene Med. 5:588–599 (2003).

    Article  PubMed  CAS  Google Scholar 

  71. P. Erbacher, T. Bettinger, P. Belguise-Valladier, S. M. Zou, J. L. Coll, J. P. Behr, and J. S. Remy. Transfection and physical properties of various saccharide, poly(ethylene glycol), and antibody-derivatized polyethylenimines (PEI). J. Gene Med. 1:210–222 (1999).

    Article  PubMed  CAS  Google Scholar 

  72. C. C. Chen and E. E. Dormidontova. Architectural and structural optimization of the protective polymer layer for enhanced targeting. Langmuir 21:5605–5615 (2005).

    Article  PubMed  CAS  Google Scholar 

  73. C. Cluzel, F. Saltel, J. Lussi, F. Paulhe, B. A. Imhof, and B. Wehrle-Haller. The mechanisms and dynamics of alpha v beta 3 integrin clustering in living cells. J. Cell Biol. 171:383–392 (2005).

    Article  PubMed  CAS  Google Scholar 

  74. K. Engin, D. B. Leeper, J. R. Cater, A. J. Thistlethwaite, L. Tupchong, and J. D. Mcfarlane. Extracellular Ph distribution in human tumors. Int. J. Hypertherm. 11:211–216 (1995).

    CAS  Google Scholar 

  75. H. S. Yoo, E. A. Lee, and T. G. Park. Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages. J. Control. Release 82:17–27 (2002).

    Article  PubMed  CAS  Google Scholar 

  76. Y. Bae, S. Fukushima, A. Harada, and K. Kataoka. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew. Chem. Int. Ed. Engl. 42:4640–4643 (2003).

    Article  PubMed  CAS  Google Scholar 

  77. Y. Bae, W. D. Jang, N. Nishiyama, S. Fukushima, and K. Kataoka. Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Molecular Biosystems 1:242–250 (2005).

    Article  PubMed  CAS  Google Scholar 

  78. Y. Bae, N. Nishiyama, S. Fukushima, H. Koyama, M. Yasuhiro, and K. Kataoka. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug. Chem. 16:122–130 (2005).

    Article  PubMed  CAS  Google Scholar 

  79. E. R. Gillies and J. M. J. Frechet. A new approach towards acid sensitive copolymer micelles for drug delivery. Chem. Commun. 1640–1641 (2003).

  80. E. R. Gillies and J. M. J. Frechet. pH-responsive copolymer assemblies for controlled release of doxorubicin. Bioconjug. Chem. 16:361–368 (2005).

    Article  PubMed  CAS  Google Scholar 

  81. E. R. Gillies, A. P. Goodwin, and J. M. J. Frechet. Acetals as pH-sensitive linkages for drug delivery. Bioconjug. Chem. 15:1254–1263 (2004).

    Article  PubMed  CAS  Google Scholar 

  82. H. R. Stapert, N. Nishiyama, D. L. Jiang, T. Aida, and K. Kataoka. Polyion complex micelles encapsulating light-harvesting ionic dendrimer zinc porphyrins. Langmuir 16:8182–8188 (2000).

    Article  CAS  Google Scholar 

  83. H. R. Stapert, N. Nishiyama, D. L. Jiang, T. Aida, and K. Kataoka. Poly-ion complex micelles encapsulating light-harvesting ionic Zn porphyrin dendrimers for PDT. Abstr. Pap.-Am. Chem. Soc. 219:U226 (2000).

    Google Scholar 

  84. Y. Q. Tang, S. Y. Liu, S. P. Armes, and N. C. Billingham. Solubilization and controlled release of a hydrophobic drug using novel micelle-forming ABC triblock copolymers. Biomacromolecules 4:1636–1645 (2003).

    Article  PubMed  CAS  Google Scholar 

  85. E. S. Lee, H. J. Shin, K. Na, and Y. H. Bae. Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization. J. Control. Release 90:363–374 (2003).

    Article  PubMed  CAS  Google Scholar 

  86. E. S. Lee, K. Na, and Y. H. Bae. Super pH-sensitive multifunctional polymeric micelle. Nano Lett. 5:325–329 (2005).

    Article  PubMed  CAS  Google Scholar 

  87. E. S. Lee, K. Na, and Y. H. Bae. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J. Control. Release 103:405–418 (2005).

    Article  PubMed  CAS  Google Scholar 

  88. E. S. Lee, K. Na, and Y. H. Bae. Polymeric micelle for tumor pH and folate-mediated targeting. J. Control. Release 91:103–13 (2003).

    Article  PubMed  CAS  Google Scholar 

  89. D. M. Lynn, M. M. Amiji, and R. Langer. pH-responsive polymer microspheres: rapid release of encapsulated material within the range of intracellular pH. Angew. Chem. Int. Ed. Engl. 40:1707–1710 (2001).

    Article  PubMed  CAS  Google Scholar 

  90. A. Potineni, D. M. Lynn, R. Langer, and M. M. Amiji. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive biodegradable system for paclitaxel delivery. J. Control. Release 86:223–234 (2003).

    Article  PubMed  CAS  Google Scholar 

  91. D. Shenoy, S. Little, R. Langer, and M. Amiji. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs. 1. In vitro evaluations. Mol. Pharmacol. 2:357–366 (2005).

    Article  CAS  Google Scholar 

  92. D. Shenoy, S. Little, R. Langer, and M. Amiji. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 2. In vivo distribution and tumor localization studies. Pharm. Res. 22:2107–2114 (2005).

    Article  PubMed  CAS  Google Scholar 

  93. K. S. Soppimath, D. C. W. Tan, and Y. Y. Yang. pH-triggered thermally responsive polymer core-shell nanoparticles for drug delivery. Adv. Mater. 17:318+ (2005).

    Article  CAS  Google Scholar 

  94. J. Taillefer, M. C. Jones, N. Brasseur, J. E. Van Lier, and J. C. Leroux. Preparation and characterization of pH-responsive polymeric micelles for the delivery of photosensitizing anticancer drugs. J. Pharm. Sci. 89:52–62 (2000).

    Article  PubMed  CAS  Google Scholar 

  95. J. Taillefer, N. Brasseur, J. E. van Lier, V. Lenaerts, D. Le Garrec, and J. C. Leroux. In vitro and In vivo evaluation of pH-responsive polymeric micelles in a photodynamic cancer therapy model. J. Pharm. Pharmacol. 53:155–166 (2001).

    Article  PubMed  CAS  Google Scholar 

  96. D. Le Garrec, J. Taillefer, J. E. Van Lier, V. Lenaerts, and J. C. Leroux. Optimizing pH-responsive polymeric micelles for drug delivery in a cancer photodynamic therapy model. J. Drug Target. 10:429–437 (2002).

    Article  PubMed  CAS  Google Scholar 

  97. H. Hayashi, M. Iijima, K. Kataoka, and Y. Nagasaki. pH-sensitive nanogel possessing reactive PEG tethered chains on the surface. Macromolecules 37:5389–5396 (2004).

    Article  CAS  Google Scholar 

  98. T. K. Bronich, P. A. Keifer, L. S. Shlyakhtenko, and A. V. Kabanov. Polymer micelle with cross-linked ionic core. J. Am. Chem. Soc. 127:8236–8237 (2005).

    Article  PubMed  CAS  Google Scholar 

  99. J. van der Zee. Heating the patient: a promising approach? Ann. Oncol. 13:1173–1184 (2002).

    Article  PubMed  Google Scholar 

  100. J. E. Chung, M. Yamato, T. Aoyagi, M. Yokoyama, Y. Sakurai, and T. Okano. Temperature-responsive polymeric micelles as intelligent drug carriers. Abstr. Pap.-Am. Chem. Soc. 216:U5 (1998).

    Google Scholar 

  101. J. E. Chung, M. Yokoyama, T. Aoyagi, Y. Sakurai, and T. Okano. Effect of molecular architecture of hydrophobically modified poly(N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers. J. Control. Release 53:119–130 (1998).

    Article  PubMed  CAS  Google Scholar 

  102. J. E. Chung, M. Yokoyama, K. Suzuki, T. Aoyagi, Y. Sakurai, and T. Okano. Reversibly thermo-responsive alkyl-terminated poly(N-isopropylacrylamide) core-shell micellar structures. Colloids Surf. B, Biointerfaces 9:37–48 (1997).

    Article  CAS  Google Scholar 

  103. X. M. Liu, K. P. Pramoda, Y. Y. Yang, S. Y. Chow, and C. B. He. Cholesteryl-grafted functional amphiphilic poly(N-isopropylacrylamide-co-N-hydroxylmethylacrylamide): synthesis, temperaturesensitivity, self-assembly and encapsulation of a hydrophobic agent. Biomaterials 25:2619–2628 (2004).

    Article  PubMed  CAS  Google Scholar 

  104. X. M. Liu, Y. Y. Yang, and K. W. Leong. Thermally responsive polymeric micellar nanoparticles self-assembled from cholesteryl end-capped random poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide): synthesis, temperature-sensitivity, and morphologies. J. Colloid Interface Sci. 266:295–303 (2003).

    Article  PubMed  CAS  Google Scholar 

  105. F. Kohori, K. Sakai, T. Aoyagi, M. Yokoyama, Y. Sakurai, and T. Okano. Preparation and characterization of thermally responsive block copolymer micelles comprising poly(N-isopropylacrylamide-b-DL-lactide). J. Control. Release 55:87–98 (1998).

    Article  PubMed  CAS  Google Scholar 

  106. J. E. Chung, M. Yokoyama, and T. Okano. Inner core segment design for drug delivery control of thermo-responsive polymeric micelles. J. Control. Release 65:93–103 (2000).

    Article  PubMed  CAS  Google Scholar 

  107. M. Nakayama and T. Okano. Polymer terminal group effects on properties of thermoresponsive polymeric micelles with controlled outer-shell chain lengths. Biomacromolecules 6:2320–2327 (2005).

    Article  PubMed  CAS  Google Scholar 

  108. S. Q. Liu, Y. W. Tong, and Y. Y. Yang. Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(D,L-lactide-co-glycolide) with varying compositions. Biomaterials 26:5064–5074 (2005).

    Article  PubMed  CAS  Google Scholar 

  109. S. Mitragotri. Innovation—Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nature Reviews Drug Discovery 4:255–260 (2005).

    Article  PubMed  CAS  Google Scholar 

  110. S. Miyazaki, C. Yokouchi, and M. Takada. External control of drug release—controlled release of insulin from a hydrophilic polymer implant by ultrasound irradiation in diabetic rats. J. Pharm. Pharmacol. 40:716–717 (1988).

    PubMed  CAS  Google Scholar 

  111. N. Rapoport, W. G. Pitt, H. Sun, and J. L. Nelson. Drug delivery in polymeric micelles: from in vitro to in vivo. J. Control. Release 91:85–95 (2003).

    Article  PubMed  CAS  Google Scholar 

  112. N. Rapoport, A. I. Smirnov, A. Timoshin, A. M. Pratt, and W. G. Pitt. Factors affecting the permeability of Pseudomonas aeruginosa cell walls toward lipophilic compounds: Effects of ultrasound and cell age. Arch. Biochem. Biophys. 344:114–124 (1997).

    Article  PubMed  CAS  Google Scholar 

  113. E. Ruel-Gariepy and J. C. Leroux. In situ-forming hydrogels—review of temperature-sensitive systems. Eur. J. Pharm. Biopharm. 58:409–426 (2004).

    Article  PubMed  CAS  Google Scholar 

  114. A. V. Kabanov, E. V. Batrakova, and V. Y. Alakhov. Pluronic((R)) block copolymers for overcoming drug resistance in cancer. Adv. Drug Deliv. Rev. 54:759–779 (2002).

    Article  PubMed  CAS  Google Scholar 

  115. G. A. Husseini, C. M. Runyan, and W. G. Pitt. Investigating the mechanism of acoustically activated uptake of drugs from Pluronic micelles. BMC Cancer 2: (2002).

  116. G. A. Husseini, N. Y. Rapoport, D. A. Christensen, J. D. Pruitt, and W. G. Pitt. Kinetics of ultrasonic release of doxorubicin from pluronic P105 micelles. Colloids Surf., B Biointerfaces 24:253–264 (2002).

    Article  CAS  Google Scholar 

  117. N. Munshi, N. Rapoport, and W. G. Pitt. Ultrasonic activated drug delivery from pluronic P-105 micelles. Cancer Lett. 118:13–19 (1997).

    Article  PubMed  CAS  Google Scholar 

  118. N. Y. Rapoport, J. N. Herron, W. G. Pitt, and L. Pitina. Micellar delivery of doxorubicin and its paramagnetic analog, ruboxyl, to HL-60 cells: effect of micelle structure and ultrasound on the intracellular drug uptake. J. Control. Release 58:153–162 (1999).

    Article  PubMed  CAS  Google Scholar 

  119. A. Marin, H. Sun, G. A. Husseini, W. G. Pitt, D. A. Christensen, and N. Y. Rapoport. Drug delivery in pluronic micelles: effect of high-frequency ultrasound on drug release from micelles and intracellular uptake. J. Control. Release 84:39–47 (2002).

    Article  PubMed  CAS  Google Scholar 

  120. Z. G. Gao, H. D. Fain, and N. Rapoport. Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound. J. Control. Release 102:203–222 (2005).

    Article  PubMed  CAS  Google Scholar 

  121. G. A. Husseini, D. A. Christensen, N. Y. Rapoport, and W. G. Pitt. Ultrasonic release of doxorubicin from Pluronic P105 micelles stabilized with an interpenetrating network of N,N-diethylacrylamide. J. Control. Release 83:303–305 (2002).

    Article  PubMed  CAS  Google Scholar 

  122. J. D. Pruitt, G. Husseini, N. Rapoport, and M. G. Pitt. Stabilization of pluronic P-105 micelles with an interpenetrating network of N,N-diethylacrylamide. Macromolecules 33:9306–9309 (2000).

    Article  CAS  Google Scholar 

  123. J. D. Pruitt and W. G. Pitt. Sequestration and ultrasound-induced release of doxorubicin from stabilized pluronic P105 micelles. Drug Deliv. 9:253–258 (2002).

    Article  PubMed  CAS  Google Scholar 

  124. J. L. Nelson, B. L. Roeder, J. C. Carmen, F. Roloff, and W. G. Pitt. Ultrasonically activated chemotherapeutic drug delivery in a rat model. Cancer Res. 62:7280–7283 (2002).

    PubMed  CAS  Google Scholar 

  125. Y. Katayama, T. Sonoda, and M. Maeda. A polymer micelle responding to the protein kinase A signal. Macromolecules 34:8569–8573 (2001).

    Article  CAS  Google Scholar 

  126. A. Napoli, M. Valentini, N. Tirelli, M. Muller, and J. A. Hubbell. Oxidation-responsive polymeric vesicles. Nat. Mater 3:183–189 (2004).

    Article  PubMed  CAS  Google Scholar 

  127. R. M. Sawant, J. P. Hurley, S. Salmaso, A. Kale, E. Tolcheva, T. S. Levchenko, and V. P. Torchilin. “SMART” drug delivery systems: Double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjug. Chem. 17:943–949 (2006).

    Article  PubMed  CAS  Google Scholar 

  128. N. Nasongkla, E. Bey, J. M. Ren, H. Ai, C. Khemtong, J. S. Guthi, S. F. Chin, A. D. Sherry, D. A. Boothman, and J. M. Gao. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett. 6:2427–2430 (2006).

    Article  PubMed  CAS  Google Scholar 

  129. J. C. Leroux, E. Roux, D. Le Garrec, K. L. Hong, and D. C. Drummond. N-isopropylacrylamide copolymers for the preparation of pH-sensitive liposomes and polymeric micelles. J. Control. Release 72:71–84 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank the National Institutes of Health (R01-CA-90696 and R21-EB-005394) for their financial support. NN acknowledges the Royal Thai Government for a predoctoral fellowship support. EB acknowledges the predoctoral support from the NCI Minority Supplement Program. This is manuscript CSCNP008 from the “Cell Stress and Cancer Nanomedicine” program in the Simmons Comprehensive Cancer Center at the University of Texas Southwestern Medical Center at Dallas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinming Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sutton, D., Nasongkla, N., Blanco, E. et al. Functionalized Micellar Systems for Cancer Targeted Drug Delivery. Pharm Res 24, 1029–1046 (2007). https://doi.org/10.1007/s11095-006-9223-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9223-y

Key words

Navigation