Skip to main content

Advertisement

Log in

Poly(ethylene glycol)-modified Nanocarriers for Tumor-targeted and Intracellular Delivery

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The success of anti-cancer therapies largely depends on the ability of the therapeutics to reach their designated cellular and intracellular target sites, while minimizing accumulation and action at non-specific sites. Surface modification of nanoparticulate carriers with poly(ethylene glycol) (PEG)/poly(ethylene oxide) (PEO) has emerged as a strategy to enhance solubility of hydrophobic drugs, prolong circulation time, minimize non-specific uptake, and allow for specific tumor-targeting through the enhanced permeability and retention effect. Furthermore, PEG/PEO modification has emerged as a platform for incorporation of active targeting ligands, thereby providing the drug and gene carriers with specific tumor-targeting properties through a flexible tether. This review focuses on the recent developments surrounding such PEG/PEO-surface modification of polymeric nanocarriers to promote tumor-targeting capabilities, thereby enhancing efficacy of anti-cancer therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. American Cancer Society. Cancer Facts & Figures 2006. http://www.cancer.org/docroot/MED/content/MED_1_1_Most-Requested_Graphs_and_Figures_2006.asp (accessed September 12, 2006), part of www.cancer.org (accessed September 12, 2006).

  2. U.S. National Institute of Health. Cancer Statistics http://www.cancer.gov/statistics/ (accessed September 15, 2006).

  3. S. H. Jang, M. G. Wientjes, D. Lu, and J. L.-S. Au. Drug delivery and transport to solid tumors. Pharm. Res. 20:1337–1350 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. Y. Matsumura and H. Maeda. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res. 46:6387–6392 (1986).

    PubMed  CAS  Google Scholar 

  5. H. Maeda, J Wu, T. Sawa, Y. Matsumura, and K. Hori. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Rel. 65:271–284 (2000).

    Article  CAS  Google Scholar 

  6. D. E. Owens, III, and N. A. Peppas. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307:93–102 (2006).

    Article  PubMed  CAS  Google Scholar 

  7. V. P. Torchilin. Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu. Rev. Biomed. Eng. 8:343–375 (2006).

    Article  PubMed  CAS  Google Scholar 

  8. USFDA Center for Drug Evaluation and Research. Guidance for Indrustry, Scale-up and Post approval Changes: Chemistry, Manufacturing and Control. http://www.fda.gov/cder/guidance/cmc5.pdf (Accessed August 24, 2006), part of http://www.fda.gov/cder (accessed August 24, 2006).

  9. R. Duncan. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2:347–360 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. K. E. Uhrich S. M. Cannizzaro, R. S. Langer, and K. M. Shakesheff. Polymeric systems for controlled drug release. Chem. Rev. 99:3181–3198 (1999).

    Article  PubMed  CAS  Google Scholar 

  11. F. M. Veronese and G. Pasut. PEGylation, successful approach to drug delivery. Drug Discov. Today 10:1451–1458 (2005).

    Article  PubMed  CAS  Google Scholar 

  12. J. M. Harris. Poly(ethylene glycol) Chemistry: Biotechnical and Biomedical Applications. Plenum Press, New York, 1992.

    Google Scholar 

  13. M. L. Adams, A. Lavasanifar, and G. S. Kwon. Amphiphilic block copolymers for drug delivery. J. Pharm. Sci. 92:1343–1355 (2003).

    Article  PubMed  CAS  Google Scholar 

  14. N. Kumar, M. N. Ravikumar, and A. J. Domb. Biodegradable block copolymers. Adv. Drug Deliv. Rev. 53:23–44 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. M. Yokoyama. Block copolymers as drug carriers. Crit. Rev. Ther. Drug Carr. Syst. 9:213–248 (1992).

    CAS  Google Scholar 

  16. D. B. Shenoy and M. M. Amiji. Poly(ethylene oxide)-modified poly(epsilon-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int. J. Pharm. 293:261–270 (2005).

    Article  PubMed  CAS  Google Scholar 

  17. USFDA. Interactive Ingredient Guide (Redacted) January 1996. http://www.fda.gov/cder/drug/iig/default.htm (accessed August 26, 2006), part of http://www.fda.gov/cder (accessed August 26, 2006).

  18. T. Yamaoka, Y. Tabata, and Y. Ikada. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J. Pharm. Sci. 83:601–606 (1994).

    Article  PubMed  CAS  Google Scholar 

  19. C. Monfardini, O. Schiavon, P. Caliceti, M. Morpurgo, J. M. Harris, and F. M. Veronese. A branched monomethoxypoly(ethylene glycol) for protein modification. Bioconjug. Chem. 6:62–69 (1995).

    Article  PubMed  CAS  Google Scholar 

  20. S. Kommareddy, S. B. Tiwari, and M. M. Amiji. Long-circulating polymeric nanovectors for tumor-selective gene delivery. Technol. Cancer Res. Treat. 4:615–625 (2005).

    PubMed  CAS  Google Scholar 

  21. M. Hamidi, A. Azadi, and P. Rafiei. Pharmacokinetic consequences of pegylation. Drug Deliv. 13:399–409 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer. Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603 (1994).

    Article  PubMed  CAS  Google Scholar 

  23. R. Gref, A. Domb, P. Quellec, T. Blunk, R. H. Müller, J. M. Verbavatz, et al. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv. Drug Deliv. Rev. 16:215–233 (1999).

    Article  Google Scholar 

  24. S. M. Moghimi, H. Hedeman, I. S. Muir, L. Illum, and S. Davis. An investigation of the filtration capacity and the fate of large filtered sterically-stabilized microspheres in rat spleen. Biochem. Biophys. Acta 1157:233–240 (1993).

    PubMed  CAS  Google Scholar 

  25. S. M. Moghimi, A. C. Hunter, and J. C. Murray. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53:283–318 (2001).

    PubMed  CAS  Google Scholar 

  26. S. Mao, M. Neu, O. Germershaus, O. Merkel, J. Sitterberg, U. Bakowsky, et al. Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly(ethylene imine)-graft-poly(ethylene glycol) block copolymer/SiRNA polyplexes. Bioconjug. Chem. 17:1209–1218 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. S. Kommareddy and M. Amiji. Biodistribution and pharmacokinetic analysis of long-circulating thiolated gelatin nanoparticles following systemic administration in breast cancer-bearing mice. J. Pharm. Sci. 96:397–407 (2007).

    Article  PubMed  CAS  Google Scholar 

  28. D. Shenoy, S. Little, R. Langer, and M. Amiji. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 2. In vivo distribution and tumor localization studies. Pharm. Res. 22:2107–2114 (2005).

    Article  PubMed  CAS  Google Scholar 

  29. G. Kaul and M. Amiji. Biodistribution and targeting potential of poly(ethylene glycol)-modified gelatin nanoparticles in subcutaneous murine tumor model. J. Drug Target 12:585–591 (2004).

    Article  PubMed  CAS  Google Scholar 

  30. G. Kaul and M. Amiji. Long-circulating poly(ethylene glycol)-modified gelatin nanoparticles for intracellular delivery. Pharm. Res. 19:1061–1077 (2002).

    Article  PubMed  CAS  Google Scholar 

  31. D. Shenoy, S. Little, R. Langer, and M. Amiji. Poly(ethylene oxide)-modified poly (beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 1. In vitro evaluations. Mol. Pharmacol. 2:357–366 (2005).

    Article  CAS  Google Scholar 

  32. S. Kommareddy and M. Amiji. Preparation and evaluation of thiol-modified gelatin nanoparticles for intracellular DNA delivery in response to glutathione. Bioconjug. Chem. 16:1423–1432 (2005).

    Article  PubMed  CAS  Google Scholar 

  33. L. K. Shah and M. M. Amiji. Intracellular delivery of saquinavir in biodegradable polymeric nanoparticles for HIV/AIDS. Pharm. Res. 23:2638–2645 (2006).

    Article  PubMed  CAS  Google Scholar 

  34. J. S. Chawla and M. M. Amiji. Biodegradable poly (epsilon-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int. J. Pharm. 249:127–138 (2002).

    Article  PubMed  CAS  Google Scholar 

  35. I. Brigger, J. Morizet, L. Laudani, G. Aubert, M. Appel, V. Velasco, et al. Negative preclinical results with stealth nanospheres-encapsulated Doxorubicin in an orthotopic murine brain tumor model. J. Control. Release 100:29–40 (2004).

    Article  PubMed  CAS  Google Scholar 

  36. Z. Xu, W. Gu, J. Huang, H. Sui, Z. Zhou, Y. Yang, et al. In vitro and in vivo evaluation of actively targetable nanoparticles for paclitaxel delivery. Int. J. Pharm. 288:361–368 (2005).

    Article  PubMed  CAS  Google Scholar 

  37. C. Fang, B. Shi, Y. Y. Pei, M. H. Hong, J. Wu, and H. Z. Chen. In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur. J. Pharm. Sci. 27:27–36 (2006).

    Article  PubMed  CAS  Google Scholar 

  38. G. Kaul and M. Amiji. Cellular interactions and in vitro DNA transfection studies with poly(ethylene glycol)-modified gelatin nanoparticles. J. Pharm. Sci. 94:184–198 (2005).

    Article  PubMed  CAS  Google Scholar 

  39. G. Kaul and M. Amiji. Tumor-targeted gene delivery using poly(ethylene glycol)-modified gelatin nanoparticles: in vitro and in vivo studies. Pharm. Res. 22:951–961 (2005).

    Article  PubMed  CAS  Google Scholar 

  40. C. Sun, R. Sze, and M. Zhang. Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J. Biomed. Mater. Res. 78:550–557 (2006).

    Article  CAS  Google Scholar 

  41. S. H. Kim, J. H. Jeong, K. W. Chun, and T. G. Park. Target-specific cellular uptake of PLGA nanoparticles coated with poly(L-lysine)-poly(ethylene glycol)-folate conjugate. Langmuir 21:8852–8857 (2005).

    Article  PubMed  CAS  Google Scholar 

  42. M. O. Oyewumi, S. Liu, J. A. Moscow, and R. J. Mumper. Specific association of thiamine-coated gadolinium nanoparticles with human breast cancer cells expressing thiamine transporters. Bioconjug. Chem. 14:404–411 (2003).

    Article  PubMed  CAS  Google Scholar 

  43. R. M. Schiffelers, A. Ansari, J. Xu, Q. Zhou, Q. Tang, G. Storm, et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 32:e149 (2004).

    Article  PubMed  Google Scholar 

  44. D. Simberg, T. Duza, J. H. Park, M. Essler, J. Pilch, L. Zhang, et al. Biomimetic amplification of nanoparticle homing to tumors. PNAS 104:932–936 (2007).

    Article  PubMed  CAS  Google Scholar 

  45. U. B. Nielsen, D. B. Kirpotin, E. M. Pickering, K. Hong, J. W. Park, M. Refaat Shalaby, et al. Therapeutic efficacy of anti-ErbB2 immunoliposomes targeted by a phage antibody selected for cellular endocytosis. Biochem. Biophys. Acta 1591:109–118 (2002).

    Article  PubMed  CAS  Google Scholar 

  46. N. C. Bellocq, S. H. Pun, G. S. Jensen, and M. E. Davis. Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery. Bioconjug. Chem. 14:1122–1132 (2003).

    Article  PubMed  CAS  Google Scholar 

  47. X. Gao, W. Tao, W. Lu, Q. Zhang, Y. Zhang, X. Jiang, et al. Lectin-conjugated PEG-PLA nanoparticles: preparation and brain delivery after intranasal administration. Biomaterials 27:3482–3490 (2006).

    Article  PubMed  CAS  Google Scholar 

  48. T. A. Elbayoumi and V. P. Torchilin. Enhanced accumulation of long-circulating liposomes modified with the nucleosome-specific monoclonal antibody 2C5 in various tumours in mice: gamma-imaging studies. Eur. J. Nucl. Med. Mol. Imaging 33:1196–1205 (2006).

    Article  PubMed  CAS  Google Scholar 

  49. M. E. Hayes, D. C. Drummond, K. Hong, W. W. Zheng, V. A. Khorosheva, J. A. Cohen, et al. Increased target specificity of anti-HER2 genospheres by modification of surface charge and degree of PEGylation. Mol. Pharmacol. 3:726–736 (2006).

    Article  CAS  Google Scholar 

  50. Y. I. Jeong, S. J. Seo, I. K. Park, H. C. Lee, I. C. Kang, T. Akaike, et al. Cellular recognition of paclitaxel-loaded polymeric nanoparticles composed of poly(gamma-benzyl L-glutamate) and poly(ethylene glycol) diblock copolymer endcapped with galactose moiety. Int. J. Pharm. 296:151–161 (2005).

    Article  PubMed  CAS  Google Scholar 

  51. O. C. Farokhzad, J. Cheng, B. A. Teply, I. Sherifi, S. Jon, P. W. Kantoff, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. PNAS 103:6315–6320 (2006).

    Article  PubMed  CAS  Google Scholar 

  52. G. Russell-Jones, K. McTavish, J. McEwan, J. Rice, and D. Nowotnik. Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumours. J. Inorg. Biochem. 98:1625–1633 (2004).

    Article  PubMed  CAS  Google Scholar 

  53. S. H. Kim, J. H. Jeong, K. W. Chun, and T. G. Park. Target-specific cellular uptake of PLGA nanoparticles coated with poly(L-lysine)-poly(ethylene glycol)-folate conjugate. Langmuir 21:8852–8857 (2005).

    Article  PubMed  CAS  Google Scholar 

  54. Y. Hattori and Y. Maitani. Enhanced in vitro DNA transfection efficiency by novel folate-linked nanoparticles in human prostate cancer and oral cancer. J. Control. Release 97:173–183 (2004).

    Article  PubMed  CAS  Google Scholar 

  55. S. H. Pun, F. Tack, N. C. Bellocq, J. Cheng, B. H. Grubbs, G. S. Jensen, et al. Targeted delivery of RNA-cleaving DNA enzyme (DNAzyme) to tumor tissue by transferrin-modified, cyclodextrin-based particles. Cancer Biol. Ther. 3:641–650 (2004).

    Article  PubMed  CAS  Google Scholar 

  56. A. Nori and J. Kopecek. Intracellular targeting of polymer-bound drugs for cancer chemotherapy. Adv. Drug Deliv. Rev. 57:609–636 (2005).

    Article  PubMed  CAS  Google Scholar 

  57. H. Harada and S. Grant. Apoptosis regulators. Rev. Clin. Exp. Hematol. 7:117–138 (2003).

    PubMed  CAS  Google Scholar 

  58. E. Vives, P. Brodin, and B. Lebleu. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272:16010–16017 (1997).

    Article  Google Scholar 

  59. D. A. Mann and A. D. Frankel. Endocytosis and targeting of exogenous HIV-1 Tat protein. EmBO J. 10:1733–1739 (1991).

    PubMed  CAS  Google Scholar 

  60. E. Kleemann, M. Neu, N. Jekel, L. Fink, T. Schmehl, T. Gessler, et al. Nano-carriers for DNA delivery to the lung based upon a TAT-derived peptide covalently coupled to PEG-PEI. J. Control. Release 109:299–316 (2005).

    Article  PubMed  CAS  Google Scholar 

  61. V. Del Gaizo, J. A. MacKenzie, and R. M. Payne. Targeting proteins to mitochondria using TAT. Mol. Genet. Metab. 80:170–180 (2003).

    Article  PubMed  CAS  Google Scholar 

  62. M. Oishi, K. Kataoka, and Y. Nagasaki. pH-responsive three-layered PEGylated polyplex micelle based on a lactosylated ABC triblock copolymer as a targetable and endosome-disruptive nonviral gene vector. Bioconjug. Chem. 17:677–688 (2006).

    Article  CAS  Google Scholar 

  63. I. M. Hafez, N. Maurer, and P. R. Cullis. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther. 8:1188–1196 (2001).

    Article  PubMed  CAS  Google Scholar 

  64. J. Wang, D. Mongayt, and V. P. Torchilin. Polymeric micelles for delivery of poorly soluble drugs: preparation and anticancer activity in vitro of paclitaxel incorporated into mixed micelles based on poly(ethylene glycol)-lipid conjugate and positively charged lipids. J. Drug Target. 13:73–80 (2005).

    Article  PubMed  CAS  Google Scholar 

  65. S. Mishra, P. Webster, and M. E. Davis. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur. J. Cell Biol. 83:97–111 (2004).

    Article  PubMed  CAS  Google Scholar 

  66. W. Li, Z. Huang, J. A. MacKay, S. Grube, and F. C. Szoka, Jr. Low-pH-sensitive poly(ethylene glycol) (PEG)-stabilized plasmid nanolipoparticles: effects of PEG chain length, lipid composition and assembly conditions on gene delivery. J. Gene Med. 7:67–79 (2005).

    Article  PubMed  CAS  Google Scholar 

  67. R. M. Sawant, J. P. Hurley, S. Salmaso, A. Kale, E. Tolcheva, T. S. Levchenko, et al. “SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjug. Chem. 17:943–949 (2006).

    Article  PubMed  CAS  Google Scholar 

  68. C. A. Fustin, C. Colard, M. Filali, P. Guillet, A. S. Duwez, M. A. Meier, et al. Tuning the hydrophilicity of gold nanoparticles templated in star block copolymers. Langmuir 22:6690–6695 (2006).

    Article  PubMed  CAS  Google Scholar 

  69. C. Hiemstra, Z. Zhong, L. Li, P. J. Dijkstra, and J. Feijen. In-Situ Formation of Biodegradable Hydrogels by Stereocomplexation of PEG-(PLLA) (8) and PEG-(PDLA) (8) Star Block Copolymers. Biomacromolecules 7:2790–2795 (2006).

    Article  PubMed  CAS  Google Scholar 

  70. T. Satomi, K. Ueno, Y. Fujita H. Kobayashi, J. Tanaka, Y. Mitamura, et al. Synthesis of ploypyridine-graft-PEG copolymer for protein repellent and stable interface. J. Nanosci. Nanotechnol. 6:1792–1796 (2006).

    Article  PubMed  CAS  Google Scholar 

  71. M. L. Forrest, A. Zhao, C. Y. Won, A. W. Malick, and G. S. Kwon. Lipophilic prodrugs of Hsp90 inhibitor geldanamycin for nanoencapsulation in poly(ethylene glycol)-b-poly(epsilon-caprolactone) micelles. J. Control. Rel. 116:139–149 (2006).

    Article  CAS  Google Scholar 

  72. Z. Sezgin, N. Yuksel, and T. Baykara. Preparation and characterization of polymeric micelles for solubilization of poorly soluble anticancer drugs. Eur. J. Pharm. Biopharm. 64:261–268 (2006).

    Article  PubMed  CAS  Google Scholar 

  73. H. Hatakeyama, H. Akita, K. Kogure, M. Oishi, Y. Nagasaki, Y. Kihira, et al. Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid. Gene. Ther. 14:68–77 (2007).

    Article  PubMed  CAS  Google Scholar 

  74. T. Kushibiki and Y. Tabata. Preparation of poly(ethylene glycol)-introduced cationized gelatin as a non-viral gene carrier. J. Biomater. Sci. Polym. Ed. 16:1447–1461 (2005).

    Article  PubMed  CAS  Google Scholar 

  75. Y. Murakami, M. Yokohama, T. Okano, H. Nishida, Y. Tomizawa, M. Endo, et al. A novel synthetic tissue-adhesive hydrogel using a crooslinkable polymeric micelle. J. Biomed. Mater. Res. A. 80:421–427 (2006).

    Google Scholar 

  76. A. Prabhutendolkar, X. Liu, E. V. Mathias, Y. Ba, and J. A. Kornfield. Synthesis of Chlorambucil-Tempol Adduct and its Delivery using Fluoroalkyl Double-Ended Poly (Ethylene Glycol) Micelles. Drug. Deliv. 13:433–440 (2006).

    Article  PubMed  CAS  Google Scholar 

  77. L. Jongpaiboonkit, Z. Zhou, X. Ni, Y. Z. Wang, and J. Li. Self-association and micelle formation of biodegredable poly(ethylene glycol)-poly(L-lactid acid) amphiphilic di-block co-polymers. J. Biomater. Sci. Polym. Ed. 17:747–763 (2006).

    Article  PubMed  CAS  Google Scholar 

  78. T. G. Park and H. S. Yoo. Dexamethasone nano-aggregates composed of PEG-PLA-PEG triblock copolymers for anti-proliferation of smooth muscle cells. Int. J. Pharm. 326:169–173 (2006).

    Article  PubMed  CAS  Google Scholar 

  79. Y. Bae, W. D. Jang, N. Nishiyama, S. Fukushima, and K. Kataoka. Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol. Biosyst. 1:242–250 (2005).

    Article  PubMed  CAS  Google Scholar 

  80. M. O. Oyewumi, R. A. Yokel, M. Jay, T. Coakley, and R. J. Mumper. Comparison of cell uptake, biodistribution, and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor bearing mice. J. Control. Rel. 95:613–626 (2004).

    Article  CAS  Google Scholar 

  81. S. Kubetzko, E. Balic, R. Waibel, U. Zangemeister-Wittke, and A. Pluckthun. PEGylation and Multimerization of the Anti-p185-HER-2 single-chain Fv fragment 4D5: Effects on tumor targeting. J. Biol. Chem. 281:35186–35201 (2006).

    Article  PubMed  CAS  Google Scholar 

  82. D. C. Bibby, J. E. Talmadge, M. K. Dalal, S. G. Kurz, K. M. Chytil, S. E. Barry, et al. Phrmacokinetics and biodistribution of RGD-targeted doxorubicin-loaded nanoparticles in tumor-bearing mice. Int. J. Pharm. 293:281–290 (2005).

    Article  PubMed  CAS  Google Scholar 

  83. S. Utreja, A. J. Khopade, and N. K. Jain. Lipoprotein-mimicking biovectorized systems for methotrexate delivery. Pharm. Acta. Helv. 73:275–279 (1999).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor M. Amiji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Vlerken, L.E., Vyas, T.K. & Amiji, M.M. Poly(ethylene glycol)-modified Nanocarriers for Tumor-targeted and Intracellular Delivery. Pharm Res 24, 1405–1414 (2007). https://doi.org/10.1007/s11095-007-9284-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9284-6

Key words

Navigation