Skip to main content

Advertisement

Log in

Multifunctional Nanoparticulate Polyelectrolyte Complexes

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

An Erratum to this article was published on 29 May 2008

Abstract

Water-soluble, biodegradable, polymeric, polyelectrolyte complex dispersions (PECs) have evolved because of the limitations, in terms of toxicity, of the currently available systems. These aqueous nanoparticulate architectures offer a significant advantage for products that may be used as drug delivery systems in humans. PECs are created by mixing oppositely charged polyions. Their hydrodynamic diameter, surface charge, and polydispersity are highly dependent on concentration, ionic strength, pH, and molecular parameters of the polymers that are used. In particular, the complexation between polyelectrolytes with significantly different molecular weights leads to the formation of water-insoluble aggregates. Several PEC characteristics are favorable for cellular uptake and colloidal stability, including hydrodynamic diameter less than 200 nm, surface charge of >30 mV or <−30 mV, spherical morphology, and polydispersity index (PDI) indicative of a homogeneous distribution. Maintenance of these properties is critical for a successful delivery vehicle. This review focuses on the development and potential applications of PECs as multi-functional, site-specific nanoparticulate drug/gene delivery and imaging devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. M. Moghimi, A. C. Hunter, and J. C. Murray. Nanomedicine: current status and future prospects. FASEB J. 19(3):311–330 (2005).

    Article  PubMed  CAS  Google Scholar 

  2. A. Bianco, K. Kostarelos, and M. Prato. Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 9(6):674–679 (2005).

    Article  PubMed  CAS  Google Scholar 

  3. A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti. Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. U.S.A. 103(8):2480–2487 (2006).

    Article  PubMed  CAS  Google Scholar 

  4. E. Lavik and R. Langer. Tissue engineering: current state and perspectives. Appl. Microbiol. Biotechnol. 65(1):1–8 (2004).

    Article  PubMed  CAS  Google Scholar 

  5. B. Catimel, T. Domagala, M. Nerrie, J. Weinstock, S. White, H. Abud, J. Heath, and E. Nice. Recent applications of instrumental biosensors for protein and peptide structure–function studies. Prot. Peptide Letters 6(5):319–340 (1999).

    CAS  Google Scholar 

  6. S. Taylor, L. W. Qu, A. Kitaygorodskiy, J. Teske, R. A. Latour, and Y. P. Sun. Synthesis and characterization of peptide-functionalized polymeric nanoparticles. Biomacromolecules 5(1):245–248 (2004).

    Article  PubMed  CAS  Google Scholar 

  7. S. V. Vinogradov, T. K. Bronich, and A. V. Kabanov. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv. Drug Deliv. Rev. 54(1):135–147 (2002).

    Article  PubMed  CAS  Google Scholar 

  8. T. M. Allen and P. R. Cullis. Drug delivery systems: entering the mainstream. Science 303(5665):1818–1822 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. R. Haag and F. Vogtle. Highly branched macromolecules at the interface of chemistry, biology, physics, and medicine. Angew. Chem. Int. Ed. 43(3):272–273 (2004).

    Article  CAS  Google Scholar 

  10. M. Kramer, J. F. Stumbe, G. Grimm, B. Kaufmann, U. Kruger, M. Weber, and R. Haag. Dendritic polyamines: Simple access to new materials with defined treelike structures for application in nonviral gene delivery. Chem. Biochem. 5(8):1081–1087 (2004).

    Google Scholar 

  11. S. M. Moghimi, A. C. Hunter, and J. C. Murray. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53(2):283–318 (2001).

    PubMed  CAS  Google Scholar 

  12. G. Verderone, N. van Craynest, O. Boussif, C. Santaella, R. Bischoff, H. V. J. Kolbe, and P. Vierling. Lipopolycationic telomers for gene transfer: synthesis and evaluation of their in vitro transfection efficiency. J. Med. Chem. 43(7):1367–1379 (2000).

    Article  PubMed  CAS  Google Scholar 

  13. D. C. Drummond, M. Zignani, and J. C. Leroux. Current status of pH-sensitive liposomes in drug delivery. Prog. Lipid Res. 39(5):409–460 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. J. Panyam, W. Z. Zhou, S. Prabha, S. K. Sahoo, and V. Labhasetwar. Rapid endo-lysosomal escape of poly(dl-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. 16(10) (2002).

  15. W. L. Monsky, D. Fukumura, T. Gohongi, M. Ancukiewcz, H. A. Weich, V. P. Torchilin, F. Yuan, and R. K. Jain. Augmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor. Cancer Res. 59(16):4129–4135 (1999).

    PubMed  CAS  Google Scholar 

  16. H. Winet, J. O. Hollinger, and M. Stevanovic. Incorporation of polylactide–polyglycolide in a cortical defect—neoangiogenesis and blood-supply in a bone chamber. J. Orthop. Res. 13(5):679–689 (1995).

    Article  PubMed  CAS  Google Scholar 

  17. M. Guzman, J. Molpeceres, F. Garcia, and M. R. Aberturas. Preparation, characterization and in vitro drug release of poly-epsilon–caprolactone and hydroxypropyl methylcellulose phthalate ketoprofen loaded microspheres. J. Microencapsul. 13(1):25–39 (1996).

    Article  PubMed  CAS  Google Scholar 

  18. J. Kreuter, P. Ramge, V. Petrov, S. Hamm, S. E. Gelperina, B. Engelhardt, R. Alyautdin, H. von Briesen, and D. J. Begley. Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm. Res. 20(3):409–416 (2003).

    Article  PubMed  CAS  Google Scholar 

  19. J. C. Olivier, L. Fenart, R. Chauvet, C. Pariat, R. Cecchelli, and W. Couet. Indirect evidence that drug brain targeting using polysorbate 80-coated polybutylcyanoacrylate nanoparticles is related to toxicity. Pharm. Res. 16(12):1836–1842 (1999).

    Article  PubMed  CAS  Google Scholar 

  20. V. Labhasetwar, J. Bonadio, S. A. Goldstein, and J. R. Levy. Gene transfection using biodegradable nanospheres: results in tissue culture and a rat osteotomy model. Colloids Surf., B Biointerfaces 16(1–4):281–290 (1999).

    Article  CAS  Google Scholar 

  21. C. Coester, P. Nayyar, and J. Samuel. in vitro uptake of gelatin nanoparticles by murine dendritic cells and their intracellular localisation. Eur. J. Pharm. Biopharm. 62(3):306–314 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. P. Panyam and V. Labhasetwar. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug. Deliv. Rev. 55:329–347 (2003).

    Article  PubMed  CAS  Google Scholar 

  23. S. Watnasirichaikul, N. M. Davies, T. Rades, and I. G. Tucker. Preparation of biodegradable insulin nanocapsules from biocompatible microemulsions. Pharm. Res. 17(6):684–689 (2000).

    Article  PubMed  CAS  Google Scholar 

  24. I. Roy, S. Mitra, A. Maitra, and S. Mozumdar. Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery. Int. J. Pharm. 250(1):25–33 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. A. K. Cherian, A. C. Rana, and S. K. Jain. Self-assembled carbohydrate-stabilized ceramic nanoparticles for the parenteral delivery of insulin. Drug Dev. Ind. Pharm. 26(4):459–463 (2000).

    Article  PubMed  CAS  Google Scholar 

  26. J. M. Bergen, H. A. Von Recum, T. T. Goodman, A. P. Massey, and S. H. Pun. Gold nanoparticles as a versatile platform for optimizing physicochemical parameters for targeted drug delivery. Macromol. Biosci. 6(7):506–516 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. S. Z. Wang, R. M. Gao, F. M. Zhou, and M. Selke. Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy. J. Mater. Chem. 14(4):487–493 (2004).

    Article  CAS  Google Scholar 

  28. X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22(8):969–976 (2004).

    Article  PubMed  CAS  Google Scholar 

  29. K. Kataoka, A. Harada, and Y. Nagasaki. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev. 47(1):113–131 (2001).

    Article  PubMed  CAS  Google Scholar 

  30. Y.Yamamoto, Y. Nagasaki, Y. Kato, Y. Sugiyama, and K. Kataoka. Long-circulating poly(ethylene glycol)–poly(d,l-lactide) block copolymer micelles with modulated surface charge. J. Control Release 77(1–2):27–38 (2001).

    Article  PubMed  CAS  Google Scholar 

  31. M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano, Y. Sakurai, K. Kataoka, and S. Inoue. Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)–poly(aspartic acid) block copolymer. Cancer Res. 50(6):1693–1700 (1990).

    PubMed  CAS  Google Scholar 

  32. F. Q. Yu, Y. P. Liu, and R. X. Zhu. A novel method for the preparation of core-shell nanoparticles and hollow polymer nanospheres. J. Appl. Polym. Sci. 91(4):2594–2600 (2004).

    Article  CAS  Google Scholar 

  33. J. Kamps, P. J. Swart, H. W. M. Morselt, R. Pauwels, M. P. DeBethune, E. DeClercq, D. K. F. Meijer, and G. L. Scherphof. Preparation and characterization of conjugates of (modified) human serum albumin and liposomes: Drug carriers with an intrinsic anti-HIV activity. Biochim. Biophys. Acta Biomembr. 1278(2):183–190 (1996).

    Article  Google Scholar 

  34. A. C. Deverdiere, C. Dubernet, F. Nemati, M. F. Poupon, F. Puisieux, and P. Couvreur. Uptake of doxorubicin from loaded nanoparticles in multidrug-resistant leukemic murine cells. Cancer Chemother. Pharmacol. 33(6):504–508 (1994).

    CAS  Google Scholar 

  35. D. Hallahan, L. Geng, S. M. Qu, C. Scarfone, T. Giorgio, E. Donnelly, X. Gao, and J. Clanton. Integrin-mediated targeting of drug delivery to irradiated tumor blood vessels. Cancer Cell 3(1):63–74 (2003).

    Article  PubMed  CAS  Google Scholar 

  36. S. S. Talsma, J. E. Babensee, N. Murthy, and I. R. Williams. Development and in vitro validation of a targeted delivery vehicle for DNA vaccines. J. Control Release 112(2):271–279 (2006).

    Article  PubMed  CAS  Google Scholar 

  37. C. Z. S. Chen and S. L. Cooper. Interactions between dendrimer biocides and bacterial membranes. Biomaterials 23(16):3359–3368 (2002).

    Article  PubMed  CAS  Google Scholar 

  38. J. F. Kukowska-Latallo, K. A. Candido, Z. Y. Cao, S. S. Nigavekar, I. J. Majoros, T. P. Thomas, L. P. Balogh, M. K. Khan, and J. R. Baker. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res. 65(12):5317–5324 (2005).

    Article  PubMed  CAS  Google Scholar 

  39. T. P. Thomas, I. J. Majoros, A. Kotlyar, J. F. Kukowska-Latallo, A. Bielinska, A. Myc, and J. R. Baker. Targeting and inhibition of cell growth by an engineered dendritic nanodevice. J. Med. Chem. 48(11):3729–3735 (2005).

    Article  PubMed  CAS  Google Scholar 

  40. M. Witvrouw, V. Fikkert, W.Pluymers, B. Matthews, K. Mardel, D. Schols, J. Raff, Z. Debyser, E. De Clercq, G. Holan, and C. Pannecouque. Polyanionic (i.e., polysulfonate) dendrimers can inhibit the replication of human immunodeficiency virus by interfering with both virus adsorption and later steps (reverse transcriptase/integrase) in the virus replicative cycle. Mol. Pharmacol. 58(5):1100–1108 (2000).

    PubMed  CAS  Google Scholar 

  41. C. Vauthier-Holtzscherer, S. Benabbou, G. Spenlehauer, M. Veillard, and P. Couvreur. Methodology for the preparation of ultra-dispersed polymer systems. STP Pharma. Sci. 2:109–116 (1991).

    Google Scholar 

  42. T. Cruz, R. Gaspar, A. Donato, and C. Lopes. Interaction between polyalkylcyanoacrylate nanoparticles and peritoneal macrophages: MTT metabolism, NBT reduction, and NO production. Pharm. Res. 14(1):73–79 (1997).

    Article  PubMed  CAS  Google Scholar 

  43. S. Hanafusa, Y. Matsusue, T. Yasunaga, T. Yamamuro, M. Oka, Y. Shikinami, and Y. Ikada. Biodegradable plate fixation of rabbit femoral-shaft osteotomies—a comparative study. Clin. Orthop. Rel. Res. 315:262–271 (1995).

    Google Scholar 

  44. Y. Matsusue, S. Hanafusa, T.Yamamuro, Y. Shikinami, and Y. Ikada. Tissue reaction of bioabsorbable ultra-high strength poly(l-lactide) rod—a long-term study in rabbits. Clin. Orthop. Rel. Res. 317:246–253 (1995).

    Google Scholar 

  45. C. Schatz, J. M. Lucas, C. Viton, A. Domard, C. Pichot, and T. Delair. Formation and properties of positively charged colloids based on polyelectrolyte complexes of biopolymers. Langmuir 20:7766–7778 (2004).

    Article  PubMed  CAS  Google Scholar 

  46. G. Carlesso, E. Kozlov, A. Prokop, D. Unutmaz, and J. M. Davidson. Nanoparticulate system for efficient gene transfer into refractory cell targets. Biomacromolecules 6(3):1185–1192 (2005).

    Article  PubMed  CAS  Google Scholar 

  47. K. D. Fisher, K. Ulbrich, V. Subr, C. M. Ward, V. Mautner, D. Blakey, L. and W. Seymour. A versatile system for receptor-mediated gene delivery permits increased entry of DNA into target cells, enhanced delivery to the nucleus and elevated rates of transgene expression. Gene Ther. 7(15):1337–1343 (2000).

    Article  PubMed  CAS  Google Scholar 

  48. M. A. Wolfert, P. R. Dash, O. Nazarova, D. Oupicky, L. W. Seymour, S. Smart, J. Strohalm, and K. Ulbrich. Polyelectrolyte vectors for gene delivery: influence of cationic polymer on biophysical properties of complexes formed with DNA. Bioconjug. Chem. 10(6):993–1004 (1999).

    Article  PubMed  CAS  Google Scholar 

  49. B. Thu, P. Bruheim, T. Espevik, O. Smidsrod, P. SoonShiong, and G. SkjakBraek. Alginate polycation microcapsules.1. Interaction between alginate and polycation. Biomaterials 17(10):1031–1040 (1996).

    Article  PubMed  CAS  Google Scholar 

  50. T. Wang, I. Lacik, M. Brissova, A. V. Anilkumar, A. Prokop, D. Hunkeler, R. Green, K. Shahrokhi, and A. C. Powers. An encapsulation system for the immunoisolation of pancreatic islets. Nat. Biotechnol. 15(4):358–362 (1997).

    Article  PubMed  CAS  Google Scholar 

  51. S. Dragan, M. Cristea, C. Luca, and B. C. Simionescu. Polyelectrolyte complexes.1. Synthesis and characterization of some insoluble polyanion–polycation complexes. J. Polym. Sci. Pol. Chem. 34(17):3485–3494 (1996).

    Article  CAS  Google Scholar 

  52. H. Dautzenberg. Light scattering studies on polyelectrolyte complexes. Macromol. Symp. 162:1–21 (2000).

    Article  CAS  Google Scholar 

  53. L. Webster, M. B. Huglin, and I. D. Robb. Complex formation between polyelectrolytes in dilute aqueous solution. Polymer 38(6):1373–1380 (1997).

    Article  CAS  Google Scholar 

  54. A. V. Kabanov and V. A. Kabanov. DNA complexes with polycations for the delivery of genetic material into cells. Bioconjug. Chem. 6(1):7–20 (1995).

    Article  PubMed  CAS  Google Scholar 

  55. H. Dautzenberg and J. Kriz. Response of polyelectrolyte complexes to subsequent addition of salts with different cations. Langmuir 19(13):5204–5211 (2003).

    Article  CAS  Google Scholar 

  56. S. M. Hartig, G. Carlesso, J. M. Davidson, and A. Prokop. Development of improved nanoparticulate polyelectrolyte complex physicochemistry by nonstoichiometric mixing of polyions with similar molecular weights. Biomacromolecules 8(1):265–272 (2007).

    Article  PubMed  CAS  Google Scholar 

  57. A. Prokop, D. Hunkeler, S. DiMari, M. A. Haralson, T. G. Wang. Water soluble polymers for immunoisolation I: Complex coacervation and cytoxicity. Adv. Polym. Sci. 136:1–51 (1998).

    Article  CAS  Google Scholar 

  58. N. Le Roch, F.Douaud, R. Havouis, J. G. Delcros, M. Vaultier, J. P. Moulinox, and N. Seiler. Dimethylsilane polyamines: cytostatic compounds with potentials as anticancer drugs. II. Uptake and potential cytotoxic mechanisms. Anticancer Res. 22(6B):3765–3776 (2002).

    PubMed  Google Scholar 

  59. T. A. Lane and V. Krukonis. Reduction in the toxicity of a component of an artificial blood substitute by supercritical fluid fractionation. Transfusion 28(4):375–378 (1988).

    Article  PubMed  CAS  Google Scholar 

  60. G. Orive, R. M. Hernandez, A. R. Gascon, R. Igartua, and J. L. Pedraz. Development and optimisation of alginate–PMCG–alginate microcapusles for cell immobilisation. Int. J. Pharm. 259(1–2):57–68 (2003).

    Article  PubMed  CAS  Google Scholar 

  61. S. M. Hartig, R. R. Greene, G. Carlesso, J. N. Higginbotham, W. N. Khan, A. Prokop, and J. M. Davidson. Kinetic analysis of nanoparticulate polyelectrolyte complexes interactions with endothelial cells. Biomaterials 28(26):3843–3855 (2007).

    Article  PubMed  CAS  Google Scholar 

  62. C. Foged, B. Brodin, S. Frokjaer, and A. Sundblad. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int. J. Pharm. 298(2):315–322 (2005).

    Article  PubMed  CAS  Google Scholar 

  63. J. Rejman, V. Oberle, I. S. Zuhorn, and D. Hoekstra. Size-dependent internalization of particles via the pathways of clathrin—and caveolae-mediated endocytosis. Biochem. J. 377:159–169 (2004).

    Article  PubMed  CAS  Google Scholar 

  64. K. C. Wood, S. R. Little, R. Langer, and P. T. Hammond. A family of hierarchically self-assembling linear-dendritic hybrid polymers for highly efficient targeted gene delivery. Angew. Chem Int. Ed. 44(41):6704–6708 (2005).

    Article  CAS  Google Scholar 

  65. M. P. Desai, V. Labhasetwar, E. Walter, R. J. Levy, and G. L. Amidon. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm. Res. 14(11):1568–1573 (1997).

    Article  PubMed  CAS  Google Scholar 

  66. W. Zauner, N. A. Farrow, and A. M. R. Haines. In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. J. Control Release 71(1):39–51 (2001).

    Article  PubMed  CAS  Google Scholar 

  67. C. S. Chern, C. K. Lee, and C. J. Chang. Electrostatic interactions between amphoteric latex particles and proteins. Colloid Polym. Sci. 283(3):257–264 (2004).

    Article  CAS  Google Scholar 

  68. T. Trimaille, C. Pichot, A. Elaissari, H. Fessi, S. Briancon, and T. Delair. Poly(d,l-lactic acid) nanoparticle preparation and colloidal characterization. Colloid Polym. Sci. 281(12):1184–1190 (2003).

    Article  CAS  Google Scholar 

  69. S. Sugrue. Predicting and controlling colloid suspension stability using electrophoretic mobility and particle size measurements. Am. Lab. 24(6):64–71 (1992).

    CAS  Google Scholar 

  70. M. Bernfield, M. Gotte, P. W. Park, O. Reizes, M. L. Fitzgerald, J. Lincecum, and M. Zako. Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68:729–777 (1999).

    Article  PubMed  CAS  Google Scholar 

  71. K. A. Mislick and J. D. Baldeschwieler. Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc. Natl. Acad. Sci. U.S.A. 93(22):12349–12354 (1996).

    Article  PubMed  CAS  Google Scholar 

  72. J. Panyam and V. Labhasetwar. Dynamics of endocytosis and exocytosis of poly(d,l-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharm. Res. 20(2):212–220 (2003).

    Article  PubMed  CAS  Google Scholar 

  73. U. S. Huth, R. Schubert, and R. Peschka-Suss. Investigating the uptake and intracellular fate of pH-sensitive liposomes by flow cytometry and spectral bio-imaging. J. Control Release 110(3):490–504 (2006).

    Article  PubMed  CAS  Google Scholar 

  74. J. Panyam, D. Williams, A. Dash, D. Leslie-Pelecky, and V. Labhasetwar. Solid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles. J. Pharm. Sci. 93(7):1804–1814 (2004).

    Article  PubMed  CAS  Google Scholar 

  75. R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer. Biodegradable long-circulating polymeric nanospheres. Science 263(5153):1600–1603 (1994).

    Article  PubMed  CAS  Google Scholar 

  76. J. P. Salvage, S. F. Rose, G. J. Phillips, G. W. Hanlon, A. W. Lloyd, I. Y. Ma, S. P. Armes, N. C. Billingham, and A. L. Lewis. Novel biocompatible phosphorylcholine-based self-assembled nanoparticles for drug delivery. J. Control Release 104(2):259–270 (2005).

    PubMed  CAS  Google Scholar 

  77. J. C Wang, B. C. Goh, W. L. Lu, Q. Zhang, A. Chang, X. Y. Liu, T. M. C. Tan, and H. S. Lee. In vitro cytotoxicity of Stealth liposomes co-encapsulating doxorubicin and verapamil on doxorubicin-resistant tumor cells. Biol. Pharm. Bull. 28(5):822–828 (2005).

    Article  PubMed  CAS  Google Scholar 

  78. V. Bulmus, M. Woodward, L. Lin, N. Murthy, P. Stayton, and A. Hoffman. A new pH-responsive and glutathione-reactive, endosomal membrane-disruptive polymeric carrier for intracellular delivery of biomolecular drugs. J. Control Release 93(2):105–120 (2003).

    Article  PubMed  CAS  Google Scholar 

  79. J. Davda and V. Labhasetwar. Characterization of nanoparticle uptake by endothelial cells. Int. J. Pharm. 233(1–2):51–59 (2002).

    Article  PubMed  CAS  Google Scholar 

  80. M. Amyere, M. Mettlen, P. Van der Smissen, A. Platek, B. Payrastre, A. Veithen, and P. J. Courtoy. Origin, originality, functions, subversions and molecular signalling of macropinocytosis. Int. J. Med. Microbiol. 291(6–7):487–494 (2002).

    PubMed  CAS  Google Scholar 

  81. A. Catizone, L. M. Albani, F. Reola, and T. Alescio. A quantitative assessment of nonspecific pinocytosis by human endothelial cells surviving in vitro. Cell. Mol. Biol. 39(2):155–169 (1993).

    PubMed  CAS  Google Scholar 

  82. I. Behrens, A. I. V. Pena, M. J. Alonso, and T. Kissel. Comparative uptake studies of bioadhesive and non-bioadhesive nanoparticles in human intestinal cell lines and rats: the effect of mucus on particle adsorption and transport. Pharm. Res. 19(8):1185–1193 (2002).

    Article  PubMed  CAS  Google Scholar 

  83. B. Zhao, Y. F. Li, C. Buono, S. W. Waldo, N. L. Jones, M. Mori, and H. S. Kruth. Constitutive receptor-independent low density lipoprotein uptake and cholesterol accumulation by macrophages differentiated from human monocytes with macrophage-colony-stimulating factor (M–CSF). J. Biol. Chem. 281(23):15757–15762 (2006).

    Article  PubMed  CAS  Google Scholar 

  84. M. S. Brown and J. L. Goldstein. Analysis of a mutant strain of human fibroblasts with a defect in internalization of receptor-bound low-density lipoprotein. Cell 9(4):663–674 (1976).

    Article  PubMed  CAS  Google Scholar 

  85. A. Dobrian, V. Lazar, D. Tirziu, and M. Simionescu. Increased macrophage uptake of irreversibly glycated albumin modified low density lipoproteins of normal and diabetic subjects is mediated by non-saturable mechanisms. Biochim. Biophys. Acta Mol. Basis Dis. 1317(1):5–14 (1996).

    Google Scholar 

  86. Z. Panagi, A. Beletsi, G. Evangelatos, E. Livaniou, D. S. Ithakissios, and K. Avgoustakis. Effect of dose on the biodistribution and pharmacokinetics of PLGA and PLGA–mPEG nanoparticles. Int. J. Pharm. 221(1–2):143–152 (2001).

    Article  PubMed  CAS  Google Scholar 

  87. C. M. Wiethoff, J. G. Smith, G. S. Koe, and C. R. Middaugh. The potential role of proteoglycans in cationic lipid-mediated gene delivery—studies of the interaction of cationic lipid–DNA complexes with model glycosaminoglycans. J. Biol. Chem. 276(35):32806–32813 (2001).

    Article  PubMed  CAS  Google Scholar 

  88. I. Nakase, M. Niwa, T. Takeuchi, K. Sonomura, N. Kawabata, Y. Koike, M. Takehashi, S. Tanaka, K. Ueda, J. C. Simpson, A. T. Jones, Y. Sugiura, and S. Futaki. Cellular uptake of arginine-rich peptides: Roles for macropinocytosis and actin rearrangement. Mol. Ther. 10(6):1011–1022 (2004).

    Article  PubMed  CAS  Google Scholar 

  89. T. Suzuki, S. Futaki, M. Niwa, S. Tanaka, K. Ueda, and Y. Sugiura. Possible existence of common internalization mechanisms among arginine-rich peptides. J. Biol. Chem. 277(4):2437–2443 (2002).

    Article  PubMed  CAS  Google Scholar 

  90. M. Belting. Heparan sulfate proteoglycan as a plasma membrane carrier. Trends Biochem. Sci. 28(3):145–151 (2003).

    Article  PubMed  CAS  Google Scholar 

  91. M. Belting, S. Persson, and L. A. Fransson. Proteoglycan involvement in polyamine uptake. Biochem. J. 338:317–323 (1999).

    Article  PubMed  CAS  Google Scholar 

  92. L. Tang, A. M. Persky, G. Hochhaus, and B. Meibohm. Pharmacokinetic aspects of biotechnology products. J. Pharm. Sci. 93(9):2184–2204 (2004).

    Article  PubMed  CAS  Google Scholar 

  93. G. Barratt. Colloidal drug carriers: achievements and perspectives. Cell. Mol. Life Sci. 60(1):21–37 (2003).

    Article  PubMed  CAS  Google Scholar 

  94. M. Vincent and R. Duncan. Polymer conjugates: Nanosized conjugates for treated cancer. Trends Biotechnol. 24(1):39–47 (2006).

    Article  CAS  Google Scholar 

  95. T. C. Yih and M. Al-Fandi. Engineered nanoparticles as precise drug delivery systems. J. Cell. Biochem. 97(6):1184–1190 (2006).

    Article  PubMed  CAS  Google Scholar 

  96. E. H. Herman, J. Zhang, B. B. Hasinoff, D. P. Chadwick, J. R. Clark, and V. J. Ferrans. Comparison of the protective effects against chronic doxorubicin cardiotoxicity and the rates of iron (III) displacement reactions of ICRF-187 and other bisdiketopiperazines. Cancer Chemother. Pharmacol. 40(5):400–408 (1997).

    Article  PubMed  CAS  Google Scholar 

  97. M. Yokoyama, S. Fukushima, R. Uehara, K. Okamoto, K. Kataoka, Y. Sakurai, and T. Okano. Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor. J. Control Release 50(1–3):79–92 (1998).

    Article  PubMed  CAS  Google Scholar 

  98. R. Duncan. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2(5):347–360 (2003).

    Article  PubMed  CAS  Google Scholar 

  99. I. Astafieva, I. Maksimova, E. Lukanidin, V. Alakhov, and A. Kabanov. Enhancement of the polycation-mediated DNA uptake and cell transfection with pluronic P85 block copolymer. FEBS Lett. 389(3):278–280 (1996).

    Article  PubMed  CAS  Google Scholar 

  100. P. Calvo, C. RemunanLopez, J. L. VilaJato, and M. J. Alonso. Chitosan and chitosan ethylene oxide propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm. Res. 14(10):1431–1436 (1997).

    Article  PubMed  CAS  Google Scholar 

  101. M. H. Porteus, J. P. Connelly, and S. M. Pruett. A look to future directions in gene therapy research for monogenic diseases. PloS. Genet. 2(9):1285–1292 (2006).

    Article  CAS  Google Scholar 

  102. Y. Wang and F. Yuan. Delivery of viral vectors to tumor cells: Extracellular transport, systemic distribution, and strategies for improvement. Ann. Biomed. Eng. 34(1):114–127 (2006).

    Article  PubMed  CAS  Google Scholar 

  103. T. Niwa, H. Takeuchi, T. Hino, N. Kunou, and Y. Kawashima. Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with d,l-lactide glycolide copolymer by a novel spontaneous emulsification solvent diffusion method, and the drug release behavior. J. Control Release 25(1–2):89–98 (1993).

    Article  CAS  Google Scholar 

  104. Y. Tabata, S. Gutta, and R. Langer. Controlled delivery systems for proteins using polyanhydride microspheres. Pharm. Res. 10(4):487–496 (1993).

    Article  PubMed  CAS  Google Scholar 

  105. S. Cohen, T. Yoshioka, M. Lucarelli, L. H. Hwang, and R. Langer. Controlled delivery systems for proteins based on poly(lactic glycolic acid) microspheres. Pharm. Res. 8(6):713–720 (1991).

    Article  PubMed  CAS  Google Scholar 

  106. O. L. Johnson, J. L. Cleland, H. J. Lee, M. Charnis, E. Duenas, W. Jaworowicz, D. Shepard, A. Shahzamani, A. J. S. Jones, and S. D. Putney. A month-long effect from a single injection of microencapsulated human growth hormone. Nat. Med. 2(7):795–799 (1996).

    Article  PubMed  CAS  Google Scholar 

  107. T. M. Allen. Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer 2(10):750–763 (2002).

    Article  PubMed  CAS  Google Scholar 

  108. M. C. P. Cruz, S. P. Ravagnani, F. M. S. Brogna, S. P. Campana, G. C. Trivino, A. C. L. Lisboa, and L. H. I. Mei. Evaluation of the diffusion coefficient for controlled release of oxytetracycline from alginate/chitosan/poly(ethylene glycol) microbeads in simulated gastrointestinal environments. Biotechnol. Appl. Biochem. 40:243–253 (2004).

    Article  PubMed  CAS  Google Scholar 

  109. S. K. Sahoo, T. K. De, P. K. Ghosh, and A. Maitra. pH- and thermo-sensitive hydrogel nanoparticles. J. Colloid Interface Sci. 206(2):361–368 (1998).

    Article  PubMed  CAS  Google Scholar 

  110. I. C. Kwon, Y. H. Bae, and S. W. Kim. Electrically erodible polymer gel for controlled release of drugs. Nature 354(6351):291–293 (1991).

    Article  PubMed  CAS  Google Scholar 

  111. S. K. Huang, P. R. Stauffer, K. L. Hong, J. W. H. Guo, T. L. Phillips, A. Huang, and D. Papahadjopoulos. Liposomes and hyperthermia in mice—increased tumor uptake and therapeutic efficacy of doxorubicin in sterically stabilized liposomes. Cancer Res. 54(8):2186–2191 (1994).

    PubMed  CAS  Google Scholar 

  112. J. Kost, K. Leong, and R. Langer. Ultrasound-enhanced polymer degradation and release of incorporated substances—controlled release drug delivery systems. Proc. Natl. Acad. Sci. U.S.A. 86(20):7663–7666 (1989).

    Article  PubMed  CAS  Google Scholar 

  113. O. V. Gerasimov, J. A. Boomer, M. M. Qualls, and D. H. Thompson. Cytosolic drug delivery using pH- and light-sensitive liposomes. Adv. Drug Deliv. Rev. 38(3):317–338 (1999).

    Article  PubMed  CAS  Google Scholar 

  114. N. Kamiya and A. M. Klibanov. Controling the rate of protein release from polyelectrolyte complexes. Biotechnol. Bioeng. 82(5):590–594 (2003).

    Article  PubMed  CAS  Google Scholar 

  115. X. W. Shi, Y. M. Du, L. P. Sun, B. Z. Zhang, and A. Dou. Polyelectrolvte complex beads composed of water-soluble chitosan/alginate: Characterization and their protein release behavior. J. Appl. Polym. Sci. 100(6):4614–4622 (2006).

    Article  CAS  Google Scholar 

  116. A. Zezin, V. Rogacheva, V. Skobeleva, and V. Kabanov. Controlled uptake and release of proteins by polyelectrolyte gels. Polym. Adv. Technol. 13(10–12):919–925 (2002).

    Article  CAS  Google Scholar 

  117. C. Allen, D. Maysinger, and A. Eisenberg. Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf., B Biointerfaces 16(1–4):3–27 (1999).

    Article  CAS  Google Scholar 

  118. K. Fu, R. Harrell, K. Zinski, C. Um, A. Jaklenec, J. Frazier, N. Lotan, P. Burke, A. M. Klibanov, and R. Langer. A potential approach for decreasing the burst effect of protein from PLGA microspheres. J. Pharm. Sci. 92(8):1582–1591 (2003).

    Article  PubMed  CAS  Google Scholar 

  119. J. Lu, E. Jeon, B. S. Lee, H. Onyuksel, and Z. J. J. Wang. Targeted drug delivery crossing cytoplasmic membranes of intended cells via ligand-grafted sterically stabilized liposomes. J. Control Release 110(3):505–513 (2006).

    Article  PubMed  CAS  Google Scholar 

  120. S. Kessner, A. Krause, U. Rothe, and G. Bendas. Investigation of the cellular uptake of E-Selectin-targeted immunoliposomes by activated human endothelial cells. Biochim. Biophys. Acta Biomembr. 1514(2):177–190 (2001).

    Article  CAS  Google Scholar 

  121. J. D. Hood, M. Bednarski, R. Frausto, S.Guccione, R. A. Reisfeld, R. Xiang, and D. A. Cheresh. Tumor regression by targeted gene delivery to the neovasculature. Science 296(5577):2404–2407 (2002).

    Article  PubMed  CAS  Google Scholar 

  122. M. Kolonin, R. Pasqualini, and W. Arap. Molecular addresses in blood vessels as targets for therapy. Curr. Opin. Chem. Biol. 5(3):308–313 (2001).

    Article  PubMed  CAS  Google Scholar 

  123. E. Ruoslahti. Targeting tumor vasculature with homing peptides from phage display. Semin. Cancer Biol. 10(6):435–442 (2000).

    Article  PubMed  CAS  Google Scholar 

  124. D. Neri and R. Bicknell. Tumour vascular targeting. Nat. Rev. Cancer 5(6):436–446 (2005).

    Article  PubMed  CAS  Google Scholar 

  125. N. Ferrara and R. S. Kerbel. Angiogenesis as a therapeutic target. Nature 438(7070):967–974 (2005).

    Article  PubMed  CAS  Google Scholar 

  126. J. Folkman. Tumor angiogenesis: therapeutic implications. N. Eng. J. Med. 285(21):1182–1186 (1971).

    Article  CAS  Google Scholar 

  127. O. C. Farokhzad, S. Y. Jon, A. Khadelmhosseini, T. N. T. Tran, D. A. LaVan, and R. Langer. Nanopartide–aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res. 64(21):7668–7672 (2004).

    Article  PubMed  CAS  Google Scholar 

  128. A. Gabizon, A. T. Horowitz, D. Goren, D. Tzemach, F. Mandelbaum-Shavit, M. M. Qazen, and S. Zalipsky. Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: In vitro studies. Bioconjug. Chem. 10(2):289–298 (1999).

    Article  PubMed  CAS  Google Scholar 

  129. A. J. Schraa, R. J. Kok, H. E. Moorlag, E. J. Bos, J. H. Proost, D. K. F. Meijer, L. de Leu, and G. Molema. Targeting of RGD-modified proteins to tumor vasculature: A pharmacokinetic and cellular distribution study. Int. J. Cancer 102(5):469–475 (2002).

    Article  PubMed  CAS  Google Scholar 

  130. F. J. Verbaan, C. Oussoren, C. J. Snel, D. J. A. Crommelin, W. E. Hennink, and G. Storm. Steric stabilization of poly(2-(dimethylamino)ethyl methacrytate)-based polyplexes mediates prolonged circulation and tumor targeting in mice. J. Gene Med. 6(1):64–75 (2004).

    Article  PubMed  CAS  Google Scholar 

  131. A. Quintana, E. Raczka, L. Piehler, I. Lee, A. Myc, I. Majoros, A. K. Patri, T. Thomas, J. Mule, and J. R. Baker. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm. Res. 19(9):1310–1316 (2002).

    Article  PubMed  CAS  Google Scholar 

  132. S. H. Kim, J. H. Jeong, K. W. Chun, and T. G. Park. Target-specific cellular uptake of PLGA nanoparticles coated with poly(l-lysine)-poly(ethylene glycol)-folate conjugate. Langmuir 21(19):8852–8857 (2005).

    Article  PubMed  CAS  Google Scholar 

  133. S. H. Kim, J. H. Jeong, C. O. Joe, and T. G. Park. Folate receptor mediated intracellular protein delivery using PLL–PEG–FOL conjugate. J. Control Release 103(3):625–634 (2005).

    Article  CAS  Google Scholar 

  134. W. J. Kim, J. W. Yockman, M. Lee, J. H. Jeong, Y. H. Kim, and S. W. Kim. Soluble Flt-1 gene delivery using PEI-g-PEG-RGD conjugate for anti-angiogenesis. J. Control Release 106(1–2):224–234 (2005).

    Article  PubMed  CAS  Google Scholar 

  135. W. Suh, S. O. Han, L. Yu, and S. W. Kim. An angiogenic, endothelial-cell-targeted polymeric gene carrier. Mol. Ther. 6(5):664–672 (2002).

    Article  PubMed  CAS  Google Scholar 

  136. J. H. Park, S. G. Kwon, J. O. Nam, R. W. Park, H. Chung, S. B.Seo, I. S. Kim, I. C. Kwon, and S. Y. Jeong. Self-assembled nanoparticles based on glycol chitosan bearing 5 beta-cholanic acid for RGD peptide delivery. J. Control Release 95(3):579–588 (2004).

    Article  PubMed  CAS  Google Scholar 

  137. U. Hersel, C. Dahmen, and H. Kessler. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24(24):4385–4415 (2003).

    Article  PubMed  CAS  Google Scholar 

  138. L. J. Hofland, A. Capello, E. P. Krenning, M. de Jong, and M. P. van Hagen. Induction of apoptosis with hybrids of Arg–Gly–Asp molecules and peptides and antimitotic effects of hybrids of cytostatic drugs and peptides. J. Nucl. Med. 46:191S–198S (2005).

    PubMed  CAS  Google Scholar 

  139. J. Takagi. Structural basis for ligand recognition by RGD (Arg–Gly–Asp)-dependent integrins. Biochem. Soc. Trans. 32:403–406 (2004).

    Article  PubMed  CAS  Google Scholar 

  140. Y. Wu, W. B. Cai, and X. Y. Chen. Near-infrared fluorescence imaging of tumor integrin alpha(v)beta(3) expression with Cy7-labeled RGD multimers. Mol. Imaging Biol. 8(4):226–236 (2006).

    Article  PubMed  Google Scholar 

  141. D. J. Good, P. J. Polverini, F. Rastinejad, M. M. Lebeau, R. S. Lemons, W. A. Frazier, and N. P. Bouck. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc. Natl. Acad. Sci. U.S.A. 87(17):6624–6628 (1990).

    Article  PubMed  CAS  Google Scholar 

  142. I. Mikhailenko, D. Krylov, K. M. Argraves, D. D. Roberts, G. Liau, and D. K. Strickland. Cellular internalization and degradation of thrombospondin-1 is mediated by the amino-terminal heparin binding domain (HBD)—high affinity interaction of dimeric HBD with the low density lipoprotein receptor-related protein. J. Biol. Chem. 272(10):6784–6791 (1997).

    Article  PubMed  CAS  Google Scholar 

  143. S. Godyna, G. Liau, I. Popa, S. Stefansson, and W. S. Argraves. Identification of the low density lipoprotein receptor-related protein (Lrp) as an endocytic receptor for thrombospondin-1. J. Cell. Biol. 129(5):1403–1410 (1995).

    Article  PubMed  CAS  Google Scholar 

  144. H. Engelberg. Actions of heparin that may affect the malignant process. Cancer 85(2):257–272 (1999).

    Article  PubMed  CAS  Google Scholar 

  145. M. Barbareschi, P. Maisonneuve, D. Aldovini, M. G. Cangi, L. Pecciarini, F. A. Mauri, S. Veronese, O. Caffo, A. Lucenti, P. D. Palma, E. Galligioni, and C. Doglioni. High syndecan-1 expression in breast carcinoma is related to an aggressive phenotype and to poorer prognosis. Cancer 98(3):474–483 (2003).

    Article  PubMed  Google Scholar 

  146. D. H. Qiao, K. Meyer, C. Mundhenke, S. A. Drew, and A. Friedl. Heparan sulfate proteoglycans as regulators of fibroblast growth factor-2 signaling in brain endothelial cells. J. Biol. Chem. 278(18):16045–16053 (2003).

    Article  PubMed  CAS  Google Scholar 

  147. G. Su, K. Meyer, C. D. Nandini, D. H. Qiao, S. Salamat, and A. Friedl. Glypican-1 is frequently overexpressed in human gliomas and enhances FGF-2 signaling in glioma cells. Am. J. Pathol. 168(6):2014–2026 (2006).

    Article  PubMed  CAS  Google Scholar 

  148. A.R Clamp and G. C. Jayson. The clinical potential of antiangiogenic fragments of extracellular matrix proteins. Br. J. Cancer 93(9):967–972 (2005).

    Article  PubMed  CAS  Google Scholar 

  149. A. A. Bogdanov, E. Marecos, H. C. Cheng, L. Chandrasekaran, H. C. Krutzsch, D. D. Roberts, and R. Weissleder. Treatment of experimental brain tumors with trombospondin-1 derived peptides: an in vivo imaging study. Neoplasia 1(5):438–445 (1999).

    Article  PubMed  CAS  Google Scholar 

  150. T. Vogel, N. H. Guo, H. C. Krutzsch, D. A. Blake, J. Hartman, S. Mendelovitz, A. Panet, and D. D. Roberts. Modulation of endothelial cell proliferation, adhesion, and motility by recombinant heparin binding domain and synthetic peptides from the type I repeats of thrombospondin. J. Cell Biochem. 53(1):74–84 (1993).

    Article  PubMed  CAS  Google Scholar 

  151. J. M. Harris and R. B. Chess. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug. Discov. 2(3):214–221 (2003).

    Article  PubMed  CAS  Google Scholar 

  152. D. Oupicky, M. Ogris, and L. W. Seymour. Development of long-circulating polyelectrolyte complexes for systemic delivery of genes. J. Drug Target 10(2):93–98 (2002).

    Article  PubMed  CAS  Google Scholar 

  153. D. B. Kirpotin, D. C. Drummond, Y. Shao, M. R. Shalaby, K. L. Hong, U. B. Nielsen, J. D. Marks, C. C. Benz, and J. W. Park. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 66(13):6732–6740 (2006).

    Article  PubMed  CAS  Google Scholar 

  154. N. Maeda, S. Miyazawa, K. Shimizu, T. Asai, S. Yonezawa, S. Kitazawa, Y. Namba, H. Tsukada, and N. Oku. Enhancement of anticancer activity in antineovascular therapy is based on the intratumoral distribution of the active targeting carrier for anticancer drugs. Biol. Pharm. Bull. 29(9):1936–1940 (2006).

    Article  PubMed  CAS  Google Scholar 

  155. K. Vuu, J. W. Xie, M. A. McDonald, M. Bernardo, F. Hunter, Y. T. Zhang, K. Li, M. Bednarski, and S. Guccione. Gadolinium–rhodamine nanoparticles for cell labeling and tracking via magnetic resonance and optical imaging. Bioconjug. Chem. 16(4):995–999 (2005).

    Article  CAS  Google Scholar 

  156. C. Marty, C. Meylan, H. Schott, K. Ballmer-Hofer, and R. A. Schwendener. Enhanced heparan sulfate proteoglycan-mediated uptake of cell-penetrating peptide-modified liposomes. Cell. Mol. Life Sci. 61(14):1785–1794 (2004).

    Article  PubMed  CAS  Google Scholar 

  157. Z. Cheng, J. Levi, Z. M. Xiong, O. Gheysens, S. Keren, X. Y., Chen, and S. S Gambhir. Near-infrared fluorescent deoxyglucose analogue for tumor optical imaging in cell culture and living mice. Bioconjug. Chem. 17(3):662–669 (2006).

    Article  PubMed  CAS  Google Scholar 

  158. V. Ntziachristos, C. Bremer, and R. Weissleder. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur. Radiol. 13(1):195–208 (2003).

    PubMed  Google Scholar 

  159. S. Achilefu. Lighting up tumors with receptor-specific optical molecular probes. Technol. Cancer Res. Treat. 3(4):393–409 (2004).

    PubMed  CAS  Google Scholar 

  160. U. Mahmood and R. Weissleder. Near-infrared optical imaging of proteases in cancer. Mol. Cancer Ther. 2(5):489–496 (2003).

    PubMed  CAS  Google Scholar 

  161. E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel. Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents. Curr. Opin. Chem. Biol. 6(5):642–650 (2002).

    Article  PubMed  CAS  Google Scholar 

  162. K. A. Kelly, J. R. Allport, A. Tsourkas, V. R. Shinde-Patil, L. Josephson, and R. Weissleder. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ. Res. 96(3):327–336 (2005).

    Article  PubMed  CAS  Google Scholar 

  163. X. Montet, M. Funovics, K. Montet-Abou, R. Weissleder, and L. Josephson. Multivalent effects of RGD peptides obtained by nanoparticle display. J. Med. Chem. 49(20):6087–6093 (2006).

    Article  PubMed  CAS  Google Scholar 

  164. D. E. Owens and N. A. Peppas. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307(1):93–102 (2006).

    Article  PubMed  CAS  Google Scholar 

  165. P. R. Dash, M. L. Read, L. B. Barrett, M. Wolfert, and L. W. Seymour. Factors affecting blood clearance and in vivo distribution of polyelectrolyte complexes for gene delivery. Gene Ther. 6(4):643–650 (1999).

    Article  PubMed  CAS  Google Scholar 

  166. D. Oupicky, R. C. Carlisle, and L. W Seymour. Triggered intracellular activation of disulfide crosslinked polyelectrolyte gene delivery complexes with extended systemic circulation in vivo. Gene Ther. 8(9):713–724 (2001).

    Article  PubMed  CAS  Google Scholar 

  167. S. M. Moghimi. Mechanisms regulating body distribution of nanospheres conditioned with pluronic and tetronic block copolymers. Adv. Drug Deliv. Rev. 16(2–3):183–193 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We acknowledge support of National Institutes of Health Grants 1R01EB002825-01 (J.M.D. and A.P.), support from the Department of Veterans Affairs (J.M.D.), the University of Texas MD Anderson Odyssey Fellowship, and the TN Law Foundation (S.M.H.). In addition we would like to thank the Vanderbilt Institute for Nanoscale Science and Engineering (VINSE) for use of the Malvern ZetaSizer Nano ZS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Davidson.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11095-008-9623-2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartig, S.M., Greene, R.R., Dikov, M.M. et al. Multifunctional Nanoparticulate Polyelectrolyte Complexes. Pharm Res 24, 2353–2369 (2007). https://doi.org/10.1007/s11095-007-9459-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9459-1

Key words

Navigation