Skip to main content

Advertisement

Log in

Computer Modeling of Drug Delivery to the Posterior Eye: Effect of Active Transport and Loss to Choroidal Blood Flow

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The direct penetration route following transscleral drug administration presents several barrier and clearance mechanisms—including loss to choroidal blood flow, active transport by the retinal pigment epithelium (RPE), and loss to the conjunctival lymphatics and episcleral blood vessels. The objective of this research was to quantify the role of choroidal and episcleral losses.

Materials and Methods

A finite element model was created for drug distribution in the posterior human eye. The volumetric choroidal loss constant, active transport component and mass transfer from the scleral surface were unknown parameters in the model. The model was used to simulate drug distribution from a systemic source, and the results were compared to existing experimental results to obtain values for the parameters.

Results

The volumetric choroidal loss constant, mass transfer coefficient from the scleral surface and active transport component were evaluated to be (2.0 ± 0.6) × 10−5 s−1, (2.0 ± 0.35) × 10−5 cm/s and 8.54 × 10−6 cm/s respectively.

Conclusion

Loss to the choroidal circulation was small compared to loss from the scleral surface. Active transport was predicted to induce periscleral movement of the drug, resulting in more rapid distribution and elevated drug concentrations in the choroid and sclera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Yasukawa, Y. Ogura, Y. Tabata, H. Kimura, P. Wiedemann, and Y. Honda. Drug delivery systems for vitreoretinal diseases. Prog. Retin. Eye Res. 23:253–281 (2004). doi:10.1016/j.preteyeres.2004.02.003.

    Article  PubMed  CAS  Google Scholar 

  2. G. M. Bleeker, N. J. van Haeringen, E. R. Maas, and E. Glasius. Selective properties of the vitreous barrier. Exp. Eye Res. 7:37–46 (1968). doi:10.1016/S0014-4835(68)80024-7.

    Article  PubMed  CAS  Google Scholar 

  3. P. M. Hughes, O. Olejnik, J. E. Chang-Lin, and C. G. Wilson. Topical and systemic drug delivery to the posterior segments. Adv. Drug Deliv. Rev. 57:2010–2032 (2005). doi:10.1016/j.addr.2005.09.004.

    Article  PubMed  CAS  Google Scholar 

  4. D. H. Geroski, and H. F. Edelhauser. Drug delivery for posterior segment eye disease. Invest. Ophthalmol. Vis. Sci. 41:961–964 (2000).

    PubMed  CAS  Google Scholar 

  5. I. Ahmed, and T. F. Patton. Importance of the noncorneal absorption route in topical ophthalmic drug delivery. Invest. Ophthalmol. Vis. Sci. 26:584–587 (1985).

    PubMed  CAS  Google Scholar 

  6. J. Ambati, E. S. Gragoudas, J. W. Miller, T. T. You, K. Miyamoto, F. C. Delori, and A. P. Adamis. Transscleral delivery of bioactive protein to the choroid and retina. Invest. Ophthalmol. Vis. Sci. 41:1186–1191 (2000).

    PubMed  CAS  Google Scholar 

  7. J. Ambati, C. S. Canakis, J. W. Miller, E. S. Gragoudas, A. Edwards, D. J. Weissgold, I. Kim, F. C. Delori, and A. P. Adamis. Diffusion of high molecular weight compounds through sclera. Invest. Ophthalmol. Vis. Sci. 41:1181–1185 (2000).

    PubMed  CAS  Google Scholar 

  8. A. Bill. Movement of albumin and dextran through the sclera. Arch. Ophthalmol. 74:248–252 (1965).

    PubMed  CAS  Google Scholar 

  9. D. M. Maurice, and J. Polgar. Diffusion across the sclera. Exp. Eye Res. 25:577–582 (1977). doi:10.1016/0014-4835(77)90136-1.

    Article  PubMed  CAS  Google Scholar 

  10. T. W. Olsen, H. F. Edelhauser, J. I. Lim, and D. H. Geroski. Human scleral permeability. Effects of age, cryotherapy, transscleral diode laser, and surgical thinning. Invest. Ophthalmol. Vis. Sci. 36:1893–1903 (1995).

    PubMed  CAS  Google Scholar 

  11. S. C. Pflugfelder, E. Hernandez, S. J. Fliesler, J. Alvarez, M. E. Pflugfelder, and R. K. Forster. Intravitreal vancomycin. Retinal toxicity, clearance, and interaction with gentamicin. Arch. Ophthalmol. 105:831–837 (1987).

    PubMed  CAS  Google Scholar 

  12. S. Tsuboi. Measurement of the volume flow and hydraulic conductivity across the isolated dog retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 28:1776–1782 (1987).

    PubMed  CAS  Google Scholar 

  13. J. G. Cunha-Vaz, and D. M. Maurice. The active transport of fluorescein by the retinal vessels and the retina. J. Physiol. 191:467–486 (1967).

    PubMed  CAS  Google Scholar 

  14. M. Kimura, M. Araie, and S. Koyano. Movement of carboxyfluorescein across retinal pigment epithelium-choroid. Exp. Eye Res. 63:51–56 (1996). doi:10.1006/exer.1996.0090.

    Article  PubMed  CAS  Google Scholar 

  15. S. Koyano, M. Araie, and S. Eguchi. Movement of fluorescein and its glucuronide across retinal pigment epithelium-choroid. Invest. Ophthalmol. Vis. Sci. 34:531–538 (1993).

    PubMed  CAS  Google Scholar 

  16. A. Yoshida, S. Ishiko, and M. Kojima. Outward permeability of the blood-retinal barrier. Graefes Arch. Clin. Exp. Ophthalmol. 230:78–83 (1992). doi:10.1007/BF00166767.

    Article  PubMed  CAS  Google Scholar 

  17. M. S. Stay, J. Xu, T. W. Randolph, and V. H. Barocas. Computer simulation of convective and diffusive transport of controlled-release drugs in the vitreous humor. Pharm. Res. 20:96–102 (2003). doi:10.1023/A:1022207026982.

    Article  PubMed  CAS  Google Scholar 

  18. M. R. Robinson, S. S. Lee, H. Kim, S. Kim, R. J. Lutz, C. Galban, P. M. Bungay, P. Yuan, N. S. Wang, J. Kim, and K. G. Csaky. A rabbit model for assessing the ocular barriers to the transscleral delivery of triamcinolone acetonide. Exp. Eye Res. 82:479–487 (2006). doi:10.1016/j.exer.2005.08.007.

    Article  PubMed  CAS  Google Scholar 

  19. I. A. Sigal, J. G. Flanagan, and C. R. Ethier. Factors influencing optic nerve head biomechanics. Invest. Ophthalmol. Vis. Sci. 46:4189–4199 (2005). doi:10.1167/iovs.05-0541.

    Article  PubMed  Google Scholar 

  20. I. Fatt, and B. O. Hedbys. Flow of water in the sclera. Exp Eye Res. 10:243–249 (1970). doi:10.1016/S0014-4835(70)80035-5.

    Article  PubMed  CAS  Google Scholar 

  21. J. Xu, J. J. Heys, V. H. Barocas, and T. W. Randolph. Permeability and diffusion in vitreous humor: implications for drug delivery. Pharm. Res. 17:664–669 (2000). doi:10.1023/A:1007517912927.

    Article  PubMed  CAS  Google Scholar 

  22. V. P. Ranta, and A. Urtti. Transscleral drug delivery to the posterior eye: prospects of pharmacokinetic modeling. Adv. Drug Deliv. Rev. 58:1164–1181 (2006). doi:10.1016/j.addr.2006.07.025.

    Article  PubMed  CAS  Google Scholar 

  23. N. P. Blair, R. C. Zeimer, M. M. Rusin, and J. G. Cunha-Vaz. Outward transport of fluorescein from the vitreous in normal human subjects. Arch. Ophthalmol. 101:1117–1121 (1983).

    PubMed  CAS  Google Scholar 

  24. K. Miyake. Outward transport of fluorescein from vitreous in eyes with intraocular surgeries. Jpn. J. Ophthalmol. 38:1091–1096 (1984).

    Google Scholar 

  25. Y. Oguro, Y. Tsukahara, I. Saito, and T. Kondo. Estimation of the permeability of the blood-retinal barrier in normal individuals. Invest. Ophthalmol. Vis. Sci. 26:969–976 (1985).

    PubMed  CAS  Google Scholar 

  26. A. G. Palestine, and R. F. Brubaker. Pharmacokinetics of fluorescein in the vitreous. Invest. Ophthalmol. Vis. Sci. 21:542–549 (1981).

    PubMed  CAS  Google Scholar 

  27. R. C. Zeimer, N. P. Blair, and J. G. Cunha-Vaz. Pharmacokinetic interpretation of vitreous fluorophotometry. Invest. Ophthalmol. Vis. Sci. 24:1374–1381 (1983).

    PubMed  CAS  Google Scholar 

  28. C. B. Engler, B. Sander, M. Larsen, P. Dalgaard, and H. Lund-Andersen. Fluorescein transport across the human blood-retina barrier in the direction vitreous to blood. Quantitative assessment in vivo. Acta. Ophthalmol. (Copenh). 72:655–662 (1994).

    CAS  Google Scholar 

  29. C. R. Ethier, M. Johnson, and J. Ruberti. Ocular biomechanics and biotransport. Annu. Rev. Biomed. Eng. 6:249–273 (2004). doi:10.1146/annurev.bioeng.6.040803.140055.

    Article  PubMed  CAS  Google Scholar 

  30. R. D. Schoenwald, G. S. Deshpande, D. G. Rethwisch, and C. F. Barfknecht. Penetration into the anterior chamber via the conjunctival/scleral pathway. J. Ocular Pharmacol. Ther. 13:41–59 (1997).

    CAS  Google Scholar 

  31. R. J. Kaiser, and D. M. Maurice. The diffusion of fluorescein in the lens. Exp. Eye Res. 3:156–165 (1964). doi:10.1016/S0014-4835(64)80030-0.

    Article  PubMed  CAS  Google Scholar 

  32. D. M. Maurice. Drug delivery to the posterior segment from drops. Surv. Ophthalmol. 47(Suppl 1):S41–52 (2002). doi:10.1016/S0039-6257(02)00326-0.

    Article  PubMed  Google Scholar 

  33. P. Blondeau, J. P. Tetrault, and C. Papamarkakis. Diurnal variation of episcleral venous pressure in healthy patients: a pilot study. J. Glaucoma. 10:18–24 (2001). doi:10.1097/00061198-200102000-00005.

    Article  PubMed  CAS  Google Scholar 

  34. P. J. Missel. Hydraulic Flow and Vascular Clearance Influences on Intravitreal Drug Delivery. Pharm. Res. 19:1636–1647 (2002). doi:10.1023/A:1020940927675.

    Article  PubMed  CAS  Google Scholar 

  35. H. Kim, M. J. Lizak, G. Tansey, K. G. Csaky, M. R. Robinson, P. Yuan, N. S. Wang, and R. J. Lutz. Study of ocular transport of drugs released from an intravitreal implant using magnetic resonance imaging. Ann. Biomed. Eng. 33:150–164 (2005). doi:10.1007/s10439-005-8974-7.

    Article  PubMed  Google Scholar 

  36. H. Kim, M. R. Robinson, M. J. Lizak, G. Tansey, R. J. Lutz, P. Yuan, N. S. Wang, and K. G. Csaky. Controlled drug release from an ocular implant: an evaluation using dynamic three-dimensional magnetic resonance imaging. Invest. Ophthalmol. Vis. Sci. 45:2722–2731 (2004). doi:10.1167/iovs.04-0091.

    Article  PubMed  Google Scholar 

  37. N. P. Blair, M. A. Evans, T. S. Lesar, and R. C. Zeimer. Fluorescein and fluorescein glucuronide pharmacokinetics after intravenous injection. Invest. Ophthalmol. Vis. Sci. 27:1107–1114 (1986).

    PubMed  CAS  Google Scholar 

  38. S. Kitano, and S. Nagataki. Transport of fluorescein monoglucuronide out of the vitreous. Invest. Ophthalmol. Vis. Sci. 27:998–1001 (1986).

    PubMed  CAS  Google Scholar 

  39. P. R. Amestoy, and J. Y. L'Excellent. MUMPS Multifrontal massively parallel solver, version 2.0. J. Phys. Condens. Matter. 10:7975 (1998). doi:10.1088/0953-8984/10/36/008.

    Article  Google Scholar 

  40. M. Araie, and D. M. Maurice. The loss of fluorescein, fluorescein glucuronide and fluorescein isothiocyanate dextran from the vitreous by the anterior and retinal pathways. Exp. Eye Res. 52:27–39 (1991). doi:10.1016/0014-4835(91)90125-X.

    Article  PubMed  CAS  Google Scholar 

  41. J. Park, P. M. Bungay, R. J. Lutz, J. J. Augsburger, R. W. Millard, A. Sinha Roy, and R. K. Banerjee. Evaluation of coupled convective-diffusive transport of drugs administered by intravitreal injection and controlled release implant. J. Control Release. 105:279–295 (2005). doi:10.1016/j.jconrel.2005.03.010.

    Article  PubMed  CAS  Google Scholar 

  42. P. Dalgaard, and M. Larsen. Fitting numerical solutions of differential equations to experimental data: a case study and some general remarks. Biometrics. 46:1097–1109 (1990). doi:10.2307/2532451.

    Article  PubMed  CAS  Google Scholar 

  43. J. Larsen, H. Lund-Andersen, and B. Krogsaa. Transient transport across the blood-retina barrier. Bull. Math. Biol. 45:749–758 (1983).

    PubMed  CAS  Google Scholar 

  44. H. Lund-Andersen, B. Krogsaa, M. la Cour, and J. Larsen. Quantitative vitreous fluorophotometry applying a mathematical model of the eye. Invest. Ophthalmol. Vis. Sci. 26:698–710 (1985).

    PubMed  CAS  Google Scholar 

  45. D. L. Vollmer, M. A. Szlek, K. Kolb, L. B. Lloyd, and T. M. Parkinson. In vivo transscleral iontophoresis of amikacin to rabbit eyes. J. Ocul. Pharmacol. Ther. 18:549–558 (2002). doi:10.1089/108076802321021090.

    Article  PubMed  CAS  Google Scholar 

  46. S. P. Ayalasomayajula, and U. B. Kompella. Retinal delivery of celecoxib is several-fold higher following subconjunctival administration compared to systemic administration. Pharm. Res. 21:1797–1804 (2004). doi:10.1023/B:PHAM.0000045231.51924.e8.

    Article  PubMed  CAS  Google Scholar 

  47. T. W. Lee, and J. R. Robinson. Drug delivery to the posterior segment of the eye: some insights on the penetration pathways after subconjunctival injection. J. Ocular Pharmacol Ther. 17:565–572 (2001). doi:10.1089/10807680152729257.

    Article  CAS  Google Scholar 

  48. A. Tsuji, I. Tamai, and K. Sasaki. Intraocular penetration kinetics of prednisolone after subconjunctival injection in rabbits. Ophthalmic. Res. 20:31–43 (1988).

    Article  PubMed  CAS  Google Scholar 

  49. N. P. Cheruvu, and U. B. Kompella. Bovine and porcine transscleral solute transport: influence of lipophilicity and the Choroid–Bruch’s layer. Invest. Ophthalmol. Vis. Sci. 47:4513–4522 (2006). doi:10.1167/iovs.06-0404.

    Article  PubMed  Google Scholar 

  50. S. Tsuboi, and J. E. Pederson. Permeability of the isolated dog retinal pigment epithelium to carboxyfluorescein. Invest. Ophthalmol. Vis. Sci. 27:1767–1770 (1986).

    PubMed  CAS  Google Scholar 

  51. S. Tsuboi, T. Fujimoto, Y. Uchihori, K. Emi, S. Iizuka, K. Kishida, and R. Manabe. Measurement of retinal permeability to sodium fluorescein in vitro. Invest. Ophthalmol. Vis. Sci. 25:1146–1150 (1984).

    PubMed  CAS  Google Scholar 

  52. A. Bill, P. Tornquist, and A. Alm. Permeability of the intraocular blood vessels. Trans. Ophthalmol. Soc. U. K. 100:332–336 (1980).

    PubMed  CAS  Google Scholar 

  53. A. Bill. Capillary permeability to and extravascular dynamics of myoglobin, albumin and gammaglobulin in the uvea. Acta Physiol. Scand. 73:204–219 (1968).

    PubMed  CAS  Google Scholar 

  54. P. Tornquist. Capillary permeability in cat choroid, studied with the single injection technique (II). Acta Physiol. Scand. 106:425–430 (1979).

    Article  PubMed  CAS  Google Scholar 

  55. G. Raviola. Conjunctival and episcleral blood vessels are permeable to blood-borne horseradish peroxidase. Invest. Ophthalmol. Vis. Sci. 24:725–736 (1983).

    PubMed  CAS  Google Scholar 

  56. L. Pitkanen, V. P. Ranta, H. Moilanen, and A. Urtti. Permeability of retinal pigment epithelium: effects of permeant molecular weight and lipophilicity. Invest. Ophthalmol. Vis. Sci. 46:641–646 (2005)doi:10.1167/iovs.04-1051.

    Article  PubMed  Google Scholar 

  57. H. Lund-Andersen, M. Larsen, P. Dalgaard, and W. Olsen. Fluorescein and fluorescein glucuronide in the vitreous body of diabetic patients. Graefes. Arch. Clin. Exp. Ophthalmol. 225:173–176 (1987). doi:10.1007/BF02175445.

    Article  PubMed  CAS  Google Scholar 

  58. F. Mac Gabhann, A. Demetriades, T. Deering, J. Packer, S. Shah, E. Duh, P. Campochiaro, and A. Popel. Protein transport to choroid and retina following periocular injection: theoretical and experimental study. Ann. Biomed. Eng. 35:615–630 (2007).

    Google Scholar 

  59. R. A. Pontes de Carvalho, M. L. Krausse, A. L. Murphree, E. E. Schmitt, P. A. Campochiaro, and I. H. Maumenee. Delivery from episcleral exoplants. Invest. Ophthalmol. Vis. Sci. 47:4532–4539 (2006). doi:10.1167/iovs.06-0030.

    Article  PubMed  Google Scholar 

  60. A. Ohtori, and K. Tojo. In vivo/in vitro correlation of intravitreal delivery of drugs with the help of computer simulation. Biol. Pharm. Bull. 17:283–290 (1994).

    PubMed  CAS  Google Scholar 

  61. S. Friedrich, Y. L. Cheng, and B. Saville. Drug distribution in the vitreous humor of the human eye: the effects of intravitreal injection position and volume. Curr. Eye Res. 16:663–669 (1997). doi:10.1076/ceyr.16.7.663.5061.

    Article  PubMed  CAS  Google Scholar 

  62. S. Friedrich, B. Saville, and Y. L. Cheng. Drug distribution in the vitreous humor of the human eye: the effects of aphakia and changes in retinal permeability and vitreous diffusivity. J. Ocular Pharmacol. Ther. 13:445–459 (1997).

    CAS  Google Scholar 

  63. S. Friedrich, Y. L. Cheng, and B. Saville. Finite element modeling of drug distribution in the vitreous humor of the rabbit eye. Ann. Biomed. Eng. 25:303–314 (1997). doi:10.1007/BF02648045.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institute for Engineering and Medicine (IEM) at the University of Minnesota and by the National Institutes of Health (R03-EB007815). The resources provided by the Minnesota Supercomputing Institute (MSI) at the University of Minnesota were used for running the simulations. We thank Phil Bransford, who helped us in the initial stages of model building and Matt Stay for providing valuable insights on the subject matter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor H. Barocas.

Appendix

Appendix

Sensitivity Computation for Gauss–Newton Scheme

Squared curve-fitting problem amounts to minimizing the error between the simulations and experimental results,

$$E = \left( {c_{\exp } - \frac{1}{V}\int\limits_v {c{\text{ }}dv} } \right)^2 $$
(11)

where c exp is the average concentration observed experimentally. The Gauss–Newton scheme finds the minimum iteratively, requiring partial derivatives of the objective function E, with respect to the parameters, e.g.,

$$\frac{\partial }{{\partial \gamma }}\left( {c_{\exp } - \frac{1}{V}\int\limits_v {c{\text{ }}dv} } \right)^2 = - 2\left( {c_{\exp } - \frac{1}{V}\int\limits_v {c{\text{ }}dv} } \right)\left( {\frac{1}{V}\int\limits_v {\frac{{\partial {\text{c}}}}{{\partial \gamma }}{\text{ }}dv} } \right)$$
(12)

The sensitivities s γ and s ksc are defined as

$$s_\gamma \equiv \frac{{\partial c}}{{\partial \gamma }}{\text{ and }}s_{{\text{ksc}}} \equiv \frac{{\partial c}}{{\partial k_{{\text{sc}}} }}$$
(13)

The mass balance Eqs. 3, 4 and 5 along with boundary conditions 7, 8 and 9 are differentiated with respect to γ and k sc to obtain the following relationships which would be solved for s γ and s ksc respectively.

Equations and Boundary Conditions for s γ

  1. 1.

    Domain equations

    $${\text{Vitreous: }}\frac{{\partial s_\gamma }}{{\partial t}} + v \cdot \nabla s_\gamma - D_v \nabla ^2 s_\gamma = 0$$
    (14)
    $${\text{RPE: }}\frac{{\partial s_\gamma }}{{\partial t}} + \left( {v + k_{{\text{act}}} } \right) \cdot \nabla s_\gamma - D_{{\text{rpe}}} \nabla ^2 s_\gamma = - \frac{{\partial k_{{\text{act}}} }}{{\partial \gamma }} \cdot \nabla c$$
    (15)
    $${\text{CS: }}\frac{{\partial s_\gamma }}{{\partial t}} + v \cdot \nabla s_\gamma - D_{{\text{cs}}} \nabla ^2 s_\gamma + \gamma s_\gamma = \left( {c_{{\text{bl}}} - c} \right)$$
    (16)
  2. 2.

    Boundary conditions

    $${\text{Lens: }}n \cdot \left( { - D\nabla s_\gamma + vs_\gamma } \right) = 0$$
    (17)
    $${\text{Hyaloid: }}n \cdot \left( { - D\nabla s_\gamma + vs_\gamma } \right) = k_{{\text{hy}}} s_\gamma $$
    (18)
    $${\text{Sclera: }}n \cdot \left( { - D\nabla s_\gamma + vs_\gamma } \right) = k_{{\text{sc}}} s_\gamma $$
    (19)

where \(\left\| {\frac{{\partial k_{{\text{act}}} }}{{\partial \gamma }}} \right\| = \frac{{{\text{Pe}}^* L_{{\text{rpe}}} }}{{\left( {\frac{{L_{{\text{rpe}}}^2 }}{{D_{{\text{rpe}}} }} + \frac{{L_{{\text{cs}}}^2 }}{{D_{{\text{cs}}} }} + \frac{1}{\gamma }} \right)^2 }}\left( {\frac{1}{{\gamma ^2 }}} \right)\) from Eq. 10, and the vector points in the same direction as kact.

Equations and Boundary Conditions for s ksc

  1. 1.

    Domain equations

    $${\text{Vitreous: }}\frac{{\partial s_{{\text{ksc}}} }}{{\partial t}} + v \cdot \nabla s_{{\text{ksc}}} - D_v \nabla ^2 s_{{\text{ksc}}} = 0$$
    (20)
    $${\text{RPE: }}\frac{{\partial s_{{\text{ksc}}} }}{{\partial t}} + \left( {v + k_{{\text{act}}} } \right) \cdot \nabla s_{{\text{ksc}}} - D_{{\text{rpe}}} \nabla ^2 s_{{\text{ksc}}} = 0$$
    (21)
    $${\text{CS: }}\frac{{\partial s_{ksc} }}{{\partial t}} + \left( {v + k_{{\text{act}}} } \right) \cdot \nabla s_{{\text{ksc}}} - D_{{\text{rpe}}} \nabla ^2 s_{{\text{ksc}}} = 0$$
    (22)
  2. 2.

    Boundary conditions

    $${\text{Lens: }}n \cdot \left( { - D\nabla s_{{\text{ksc}}} + vs_{{\text{ksc}}} } \right) = 0$$
    (23)
    $${\text{Hyaloid: }}n \cdot \left( { - D\nabla s_{{\text{ksc}}} + vs_{{\text{ksc}}} } \right) = k_{{\text{hy}}} s_{{\text{ksc}}} $$
    (24)
    $${\text{Sclera: }}n \cdot \left( { - D\nabla s_{{\text{ksc}}} + vs_{{\text{ksc}}} } \right) = k_{{\text{sc}}} s_{{\text{ksc}}} + c$$
    (25)

The average values of s γ and s ksc over the vitreous volume were calculated and used for the Gauss–Newton curve fitting algorithm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balachandran, R.K., Barocas, V.H. Computer Modeling of Drug Delivery to the Posterior Eye: Effect of Active Transport and Loss to Choroidal Blood Flow. Pharm Res 25, 2685–2696 (2008). https://doi.org/10.1007/s11095-008-9691-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9691-3

KEY WORDS

Navigation