Skip to main content
Log in

Design of Biodegradable Nanoparticles for Oral Delivery of Doxorubicin: In vivo Pharmacokinetics and Toxicity Studies in Rats

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Doxorubicin, a potent anticancer drug associated with cardiotoxicity and low oral bioavailability, was loaded into nanoparticles with a view to improve its performance.

Methods

Doxorubicin loaded PLGA nanoparticles were prepared by a double emulsion method. The pH dependent stability of nanoparticles in simulated fluids was evaluated. DSC and XRD studies were carried out in order to ascertain the nature of doxorubicin in formulations in conjunction with accelerated stability studies. The in vitro release was investigated in phosphate buffer. The pharmacokinetic and toxicity studies were conducted in rats.

Results

Nanoparticles had an average size of 185 nm, with 49% entrapment at 10% w/w of polymer. The particles displayed good pH dependent stability in the pH range 1.1–7.4. DSC and XRD studies revealed the amorphous nature of doxorubicin in nanoparticles and the accelerated stability studies revealed the integrity of formulations. Initial biphasic release (20%) followed by a sustained release (80%) for 24 days was observed under in vitro conditions. The doxorubicin loaded nanoparticles demonstrated superior performance in vivo as evident by enhanced bioavailability and lower toxicity.

Conclusions

Together, the data indicates the potential of doxorubicin loaded nanoparticles for oral chemotherapy. Further, these formulations could be explored for new indications like leishmaniasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

BA:

Bioavailability

Dox:

Doxorubicin

EE:

Entrapment Efficiency

IAEC:

Institutional Animal Ethics Committee

i.v.:

intravenous

mV:

milli volts

nm:

Nanometers

NPs:

Nanoparticles

PDI:

Polydispersity Index

SGF:

Simulated gastric fluid

SIF:

Simulated intestinal fluid

REFERENCES

  1. S. S. Feng, and S. Chien. Chemotherapeutic engineering: application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem. Eng. Sci. 58:4087–4114 (2003), doi:10.1016/S0009-2509(03)00234-3.

    Article  CAS  Google Scholar 

  2. L. Bromberg, and V. Alakhov. Effects of polyether-modified poly(acrylic acid) microgels on Doxorubicin transport in human intestinal epithelial Caco-2 cell. J. Control. Release. 88:11–22 (2003), doi:10.1016/S0168-3659(02)00419-4.

    Article  PubMed  CAS  Google Scholar 

  3. C. H. Kohne, and G. Folprecht. On prejudice and facts and choices. Annals. Oncol. 17:185–187 (2006), doi:10.1093/annonc/mdj142.

    Article  Google Scholar 

  4. Z. Zhang, and S. S. Feng. Nanoparticles of poly(lactide)/vitamin E TPGS copolymer for cancer chemotherapy: synthesis, formulation, characterization and in vitro drug release. Biomaterials. 27:262–270 (2006), doi:10.1016/j.biomaterials.2005.05.104.

    Article  PubMed  Google Scholar 

  5. Y. Dong, and S. S. Feng. Poly(d,l-lactide-co-glycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs. Biomaterials. 26:6068–6076 (2005), doi:10.1016/j.biomaterials.2005.03.021.

    Article  PubMed  CAS  Google Scholar 

  6. M. D. DeMario, and M. J. Ratain. Oral chemotherapy: rationale and future directions. J. Clin. Oncol. 16:2557–2667 (1999).

    Google Scholar 

  7. M. M. Malingre, H. J. Beijnen, and J. H. M. Schellens. Oral delivery of taxanes. Invest. New Drugs. 19:155–162 (2001), doi:10.1023/A:1010635000879.

    Article  PubMed  CAS  Google Scholar 

  8. S. K. Carter. Adriamycin—thoughts for the future. Chemother. Rep. Cancer. 63:877–883 (1975).

    Google Scholar 

  9. C. Young, R. F. Ozols, and C. E. Myers. The anthracycline antineoplastic drugs. New Eng. J. Med. 305:39–153 (1981).

    Google Scholar 

  10. G. Minotti, P. Mennae, E. Salvatorelli, G. Cairo, and L. Gia. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev. 56:185–229 (2004), doi:10.1124/pr.56.2.6.

    Article  PubMed  CAS  Google Scholar 

  11. P. K. Singal, N. Iliskovic, T. Li, and D. Kumar. Adriamycin cardiomyopathy: pathophysiology and prevention. FASEB J. 11:931–936 (1997).

    PubMed  CAS  Google Scholar 

  12. M. Ryberg, D. Nielsen, T. Skovsgaard, J. Hansen, B. V. Jensen, and P. E. Dombernowsky. Pirubicin cardiotoxicity: an analysis of 469 patients with metastatic breast cancer. J. Clin. Oncol. 16:3502–3508 (1998).

    PubMed  CAS  Google Scholar 

  13. R. E. Gonsette. A comparison of the benefits of mitoxantrone and other recent therapeutic approaches in multiple sclerosis. Expert Opin. Pharmacother. 5:747–765 (2004), doi:10.1517/14656566.5.4.747.

    Article  PubMed  CAS  Google Scholar 

  14. W. T. Bellamy. P-glycoproteins and multidrug resistance. Annual Rev. Pharmacol. Toxicol. 36:161–183 (1996), doi:10.1146/annurev.pa.36.040196.001113.

    Article  CAS  Google Scholar 

  15. L. J. Goldstein, H. Galski, A. Fojo, M. Willingham, S. L. Lai, A. Gazdar, R. Pirker, A. Green, W. Crist, G. M. Brodeur, et al. Expression of multidrug resistance gene in human cancers. J. Natl. Cancer Inst. 81:116–124 (1989), doi:10.1093/jnci/81.2.116.

    Article  PubMed  CAS  Google Scholar 

  16. L. V. Zuylen, K. Nooter, A. Sparreboom, and J. Verweij. Development of multidrug-resistance convertors: sense or nonsense? Invest. New Drugs. 18:205–220 (2000), doi:10.1023/A:1006487003814.

    Article  PubMed  Google Scholar 

  17. J.L. Italia, D. K. Bhatt, V. Bhardwaj, K. Tikoo, and M. N. V. R. Kumar. PLGA nanoparticles for oral delivery of cyclosporine: nephrotoxicity and pharmacokinetic studies in comparison to Sandimmune Neoral®. J. Control. Release. 119:197–206 (2007), doi:10.1016/j.jconrel.2007.02.004.

    Article  PubMed  CAS  Google Scholar 

  18. V. Bhardwaj, S. Hariharan, I. Bala, A. Lamprecht, N. Kumar, R. Panchagnula, and M. N. V. R. Kumar. Pharmaceutical aspects of polymeric nanoparticles for oral delivery. J. Biomed. Nanotech. 1:1–23 (2005), doi:10.1166/jbn.2005.015.

    Article  Google Scholar 

  19. I. Bala, S. Hariharan, and M. N. V. R. Kumar. PLGA Nanoparticles in drug delivery: the state of the art. Crit. Rev. Therap. Drug Carrier System. 21:387–422 (2004), doi:10.1615/CritRevTherDrugCarrierSyst.v21.i5.20.

    Article  CAS  Google Scholar 

  20. L. Kole, L. Das, and P. K. Das. Synergistic effect of interferon-g and mannosylated liposome-incorporated doxorubicin in the therapy of experimental visceral leishmaniasis. J. Infectious Diseases. 180:811–820 (1999), doi:10.1086/314929.

    Article  CAS  Google Scholar 

  21. J. L. Italia, P. Datta, D. D. Ankola, and M. N. V. R. Kumar. Nanoparticles enhance per oral bioavailability of poorly available molecules: epigallocatechin gallate nanoparticles ameliorates cyclosporine induced nephrotoxicity in rats at three times lower dose than oral solution. J. Biomed. Nanotech. 4:304–312 (2008), doi:10.1166/jbn.2008.341.

    Article  CAS  Google Scholar 

  22. E. Zimermann, and R. H. Muller. Electrolyte and pH stabilities of aqueous solid lipid nanoparticles dispersions in artificial gastrointestinal media. Eur. J. Pharm. Biopharm. 52:203–210 (2003), doi:10.1016/S0939-6411(01)00167-9.

    Article  Google Scholar 

  23. H. Ohkawa, N. Ohishi, and K. Yagi. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95:351–358 (1979), doi:10.1016/0003-2697(79)90738-3.

    Article  PubMed  CAS  Google Scholar 

  24. P. D. Scholes, A. G. Coombes, L. Illum, S. S. Davis, M. Vert, and M. C. Davies. The preparation of sub-200 nm poly(lactide-co-glycolide) microspheres for site-specific drug delivery. J. Control. Release. 25:145–153 (1993), doi:10.1016/0168-3659(93)90103-C.

    Article  CAS  Google Scholar 

  25. T. Niwa, H. Takeuchi, T. Hino, N. Kunou, and Y. Kawashima. Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with d,l-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method and the drug release behavior. J. Control. Release. 25:89–98 (1993), doi:10.1016/0168-3659(93)90097-O.

    Article  CAS  Google Scholar 

  26. A. W. Ford, and P. J. Dawson. The effect of carbohydrate additives in the freeze-drying of alkaline phosphatase. J. Pharm. Pharmacol. 45:86–93 (1993).

    PubMed  CAS  Google Scholar 

  27. J. F. Carpenter, M. J. Pikal, B. S. Chang, and T. W. Randolph. Rational design of stable flyophilized protein formulations: some practical advice. Pharm. Res. 14:969–974 (1997), doi:10.1023/A:1012180707283.

    Article  PubMed  CAS  Google Scholar 

  28. D. A. Gewirtz. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem. Pharmacol. 57:727–741 (1999), doi:10.1016/S0006-2952(98)00307-4.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

DK is grateful to NIPER for providing MS fellowships. Director, NIPER is acknowledged for extending the facility to conduct the work reported in here. Mr. Chandu, Research Scholar, Department of Pharmacology and Toxicology is acknowledged for the help with animal experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. V. Ravi Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalaria, D.R., Sharma, G., Beniwal, V. et al. Design of Biodegradable Nanoparticles for Oral Delivery of Doxorubicin: In vivo Pharmacokinetics and Toxicity Studies in Rats. Pharm Res 26, 492–501 (2009). https://doi.org/10.1007/s11095-008-9763-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9763-4

KEY WORDS

Navigation