Skip to main content

Advertisement

Log in

Maurocalcine as a Non Toxic Drug Carrier Overcomes Doxorubicin Resistance in the Cancer Cell Line MDA-MB 231

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study is to overcome tumour cell resistance that generally develops after administration of commonly used anti-cancer drugs, such as doxorubicin.

Methods

Recently, cell penetrating peptides have been used for their ability to deliver non-permeant compounds into cells. One such cell penetrating peptide, maurocalcine, has been isolated from the venom of a Tunisian scorpion. Herein, we report the effects of doxorubicin covalently coupled to an analogue of maurocalcine on drug-sensitive or drug-resistant cell lines MCF7 and MDA-MB 231.

Results

We demonstrated the in vitro anti-tumoral efficacy of the doxorubicin maurocalcine conjugate. On a doxorubicin-sensitive cancer cell line, the maurocalcine-conjugated form appears slightly less efficient than doxorubicin itself. On the contrary, on a doxorubicin-resistant cancer cell line, doxorubicin coupling allows to overcome the drug resistance. This strategy can be generalized to other cell penetrating peptides since Tat and penetratin show similar effects.

Conclusion

We conclude that coupling anti-tumoral drugs to cell penetrating peptides represent a valuable strategy to overcome drug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Con A:

Concanavalin A

CPP:

Cell Penetrating Peptide

Dox:

Doxorubicine

FACS:

Fluorescence Activated Cell Sorting

FITC:

Fluorescein IsoThioCyanate

MCa:

Maurocalcine

MCaAbu :

Maurocalcine analogue with cysteine residues replaced with L-α-aminobutyric acid

MTT:

3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide

PBS:

Phosphate Buffered Saline

Pen:

Penetratin

RyR1:

Ryanodine Receptor type 1

SMCC:

Succinimidyl 4-[N-Maleimidomethyl]Cyclohexane-1-Carboxylate

REFERENCES

  1. J. Howl, I. D. Nicholl, and S. Jones. The many futures for cell-penetrating peptides: how soon is now. Biochem. Soc. Trans. 35:767–769 (2007).

    Article  PubMed  CAS  Google Scholar 

  2. F. Perez, A. Joliot, E. Bloch-Gallego, A. Zahraoui, A. Triller, and A. Prochiantz. Antennapedia homeobox as a signal for the cellular internalization and nuclear addressing of a small exogenous peptide. J. Cell Sci. 102(Pt 4):717–722 (1992).

    PubMed  CAS  Google Scholar 

  3. A. Joliot, C. Pernelle, H. Deagostini-Bazin, and A. Prochiantz. Antennapedia homeobox peptide regulates neural morphogenesis. Proc. Nat. Acad. Sci. U S A. 88:1864–1868 (1991).

    Article  CAS  Google Scholar 

  4. D. Derossi, A. H. Joliot, G. Chassaing, and A. Prochiantz. The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269:10444–10450 (1994).

    PubMed  CAS  Google Scholar 

  5. D. Derossi, G. Chassaing, and A. Prochiantz. Trojan peptides: the penetratin system for intracellular delivery. Trends Cell Biol. 8:84–87 (1998).

    Article  PubMed  CAS  Google Scholar 

  6. M. Mae, and U. Langel. Cell-penetrating peptides as vectors for peptide, protein and oligonucleotide delivery. Curr. Opin. Pharmacol. 6:509–514 (2006).

    Article  PubMed  Google Scholar 

  7. M. Zorko, and U. Langel. Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv. Drug Deliv. Rev. 57:529–545 (2005).

    Article  PubMed  CAS  Google Scholar 

  8. J. Temsamani, and P. Vidal. The use of cell-penetrating peptides for drug delivery. Drug Discov. Today. 9:1012–1019 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. Z. Fajloun, R. Kharrat, L. Chen, C. Lecomte, E. Di Luccio, D. Bichet, M. El Ayeb, H. Rochat, P.D. Allen, I.N. Pessah, M. De Waard, and J.M. Sabatier. Chemical synthesis and characterization of maurocalcine, a scorpion toxin that activates Ca(2+) release channel/ryanodine receptors. FEBS Lett. 469:179–185 (2000).

    Article  PubMed  CAS  Google Scholar 

  10. E. Esteve, S. Smida-Rezgui, S. Sarkozi, C. Szegedi, I. Regaya, L. Chen, X. Altafaj, H. Rochat, P. Allen, I. N. Pessah, I. Marty, J. M. Sabatier, I. Jona, M. De Waard, and M. Ronjat. Critical amino acid residues determine the binding affinity and the Ca2+ release efficacy of maurocalcine in skeletal muscle cells. J. Biol. Chem. 278:37822–37831 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. E. Esteve, K. Mabrouk, A. Dupuis, S. Smida-Rezgui, X. Altafaj, D. Grunwald, J. C. Platel, N. Andreotti, I. Marty, J. M. Sabatier, M. Ronjat, and M. De Waard. Transduction of the scorpion toxin maurocalcine into cells. Evidence that the toxin crosses the plasma membrane. J. Biol. Chem. 280:12833–12839 (2005).

    Article  PubMed  CAS  Google Scholar 

  12. K. Mabrouk, N. Ram, S. Boisseau, F. Strappazzon, A. Rehaim, R. Sadoul, H. Darbon, M. Ronjat, and M. De Waard. Critical amino acid residues of maurocalcine involved in pharmacology, lipid interaction and cell penetration. Biochim. Biophys. Acta. 1768:2528–2540 (2007).

    Article  PubMed  CAS  Google Scholar 

  13. A. Mosbah, R. Kharrat, Z. Fajloun, J. G. Renisio, E. Blanc, J. M. Sabatier, M. El Ayeb, and H. Darbon. A new fold in the scorpion toxin family, associated with an activity on a ryanodine-sensitive calcium channel. Proteins. 40:436–442 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. G. Drinand, and J. Temsamani. Translocation of protegrin I through phospholipid membranes: role of peptide folding. Biochim. Biophys. Acta. 1559:160–170 (2002).

    Article  Google Scholar 

  15. N. Ram, N. Weiss, I. Texier-Nogues, S. Aroui, N. Andreotti, F. Pirollet, M. Ronjat, J.M. Sabatier, H. Darbon, V. Jacquemond, and M. De Waard. Design of a disulfide-less, pharmacologically-inert and chemically-competent analog of maurocalcine for the efficient transport of impermeant compounds into cells. J. Biol. Chem. 283:27048–27056 (2008).

    Google Scholar 

  16. G. Bonadonna, M. Zambetti, A. Moliterni, L. Gianni, and P. Valagussa. Clinical relevance of different sequencing of doxorubicin and cyclophosphamide, methotrexate, and Fluorouracil in operable breast cancer. J. Clin. Oncol. 22:1614–1620 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. M. Colozza, E. de Azambuja, F. Cardoso, C. Bernard, and M. J. Piccart. Breast cancer: achievements in adjuvant systemic therapies in the pre-genomic era. Oncologist. 11:111–125 (2006).

    Article  PubMed  CAS  Google Scholar 

  18. H. L. Wong, R. Bendayan, A. M. Rauth, H. Y. Xue, K. Babakhanian, and X. Y. Wu. A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer–lipid hybrid nanoparticle system. J. Pharmacol. Exp. Ther. 317:1372–1381 (2006).

    Article  PubMed  CAS  Google Scholar 

  19. G. Szakacs, J.K. Paterson, J.A. Ludwig, C. Booth-Genthe, and M.M. Gottesman. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 5:219–234 (2006).

    Article  PubMed  CAS  Google Scholar 

  20. L. Smith, M. B. Watson, S. L. O’Kane, P. J. Drew, M. J. Lind, and L. Cawkwell. The analysis of doxorubicin resistance in human breast cancer cells using antibody microarrays. Mol. Cancer Ther. 5:2115–2120 (2006).

    Article  PubMed  CAS  Google Scholar 

  21. J. C. Mallory, G. Crudden, A. Oliva, C. Saunders, A. Stromberg, and R. J. Craven. A novel group of genes regulates susceptibility to antineoplastic drugs in highly tumorigenic breast cancer cells. Mol. Pharmacol. 68:1747–1756 (2005).

    PubMed  CAS  Google Scholar 

  22. M. de la Torre, X. Y. Hao, R. Larsson, P. Nygren, T. Tsuruo, B. Mannervik, and J. Bergh. Characterization of four doxorubicin adapted human breast cancer cell lines with respect to chemotherapeutic drug sensitivity, drug resistance associated membrane proteins and glutathione transferases. Anticancer Res. 13:1425–1430 (1993).

    PubMed  Google Scholar 

  23. D. S. Kim, S. S. Park, B. H. Nam, I. H. Kim, and S. Y. Kim. Reversal of drug resistance in breast cancer cells by transglutaminase 2 inhibition and nuclear factor-kappaB inactivation. Cancer Res. 66:10936–10943 (2006).

    Article  PubMed  CAS  Google Scholar 

  24. Y. Fang, R. Sullivan, and C. H. Graham. Confluence-dependent resistance to doxorubicin in human MDA-MB-231 breast carcinoma cells requires hypoxia-inducible factor-1 activity. Exp Cell Res. 313:867–877 (2007).

    Article  PubMed  CAS  Google Scholar 

  25. M. Hruby, C. Konak, and K. Ulbrich. Polymeric micellar pH-sensitive drug delivery system for doxorubicin. J. Control Release. 103:137–148 (2005).

    Article  PubMed  CAS  Google Scholar 

  26. F. Tewes, E. Munnier, B. Antoon, L. Ngaboni Okassa, S. Cohen-Jonathan, H. Marchais, L. Douziech-Eyrolles, M. Souce, P. Dubois, and I. Chourpa. Comparative study of doxorubicin-loaded poly(lactide-co-glycolide) nanoparticles prepared by single and double emulsion methods. Eur. J. Pharm. Biopharm. 66:488–492 (2007).

    Article  PubMed  CAS  Google Scholar 

  27. U. Massing, and S. Fuxius. Liposomal formulations of anticancer drugs: selectivity and effectiveness. Drug Resist. Updat. 3:171–177 (2000).

    Article  PubMed  CAS  Google Scholar 

  28. G. Di Stefano, M. Lanza, F. Kratz, L. Merina, and L. Fiume. A novel method for coupling doxorubicin to lactosaminated human albumin by an acid sensitive hydrazone bond: synthesis, characterization and preliminary biological properties of the conjugate. Eur. J. Pharm. Sci. 23:393–397 (2004).

    Article  PubMed  Google Scholar 

  29. G. Di Stefano, L. Fiume, M. Domenicali, C. Busi, P. Chieco, F. Kratz, M. Lanza, A. Mattioli, M. Pariali, and M. Bernardi. Doxorubicin coupled to lactosaminated albumin: effects on rats with liver fibrosis and cirrhosis. Dig. Liver Dis. 38:404–408 (2006).

    Article  PubMed  Google Scholar 

  30. J. F. Liang, and V. C. Yang. Synthesis of doxorubicin–peptide conjugate with multidrug resistant tumor cell killing activity. Bioorg. Med. Chem. Lett. 15:5071–5075 (2005).

    Article  PubMed  CAS  Google Scholar 

  31. K. R. Hande. Clinical applications of anticancer drugs targeted to topoisomerase II. Biochim. Biophys. Acta. 1400:173–184 (1998).

    PubMed  CAS  Google Scholar 

  32. F. Shen, S. Chu, A. K. Bence, B. Bailey, X. Xue, P. A. Erickson, M. H. Montrose, W. T. Beck, and L. C. Erickson. Quantitation of doxorubicin uptake, efflux, and modulation of multidrug resistance (MDR) in MDR human cancer cells. J. Pharmacol. Exp. Ther. 324:95–102 (2008).

    Article  PubMed  CAS  Google Scholar 

  33. S. Modok, H. R. Mellor, and R. Callaghan. Modulation of multidrug resistance efflux pump activity to overcome chemoresistance in cancer. Curr. Opin. Pharmacol. 6:350–354 (2006).

    Article  PubMed  CAS  Google Scholar 

  34. F. J. Sharom. ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics. 9:105–127 (2008).

    Article  PubMed  CAS  Google Scholar 

  35. D. Nielsen, C. Maare, and T. Skovsgaard. Cellular resistance to anthracyclines. Gen. Pharmacol. 27:251–255 (1996).

    PubMed  CAS  Google Scholar 

  36. G. J. Schuurhuis, T. H. van Heijningen, A. Cervantes, H. M. Pinedo, J. H. de Lange, H. G. Keizer, H. J. Broxterman, J. P. Baak, and J. Lankelma. Changes in subcellular doxorubicin distribution and cellular accumulation alone can largely account for doxorubicin resistance in SW-1573 lung cancer and MCF-7 breast cancer multidrug resistant tumour cells. Br. J. Cancer. 68:898–908 (1993).

    PubMed  CAS  Google Scholar 

  37. L.I. McLellan, and C. R. Wolf. Glutathione and glutathione-dependent enzymes in cancer drug resistance. Drug Resist Updat. 2:153–164 (1999).

    Article  PubMed  CAS  Google Scholar 

  38. A. Ziegler, and J. Seelig. High affinity of the cell-penetrating peptide HIV-1 Tat-PTD for DNA. Biochemistry. 46:8138–8145 (2007).

    Article  PubMed  CAS  Google Scholar 

  39. Y. van Hensbergen, H. J. Broxterman, Y. W. Elderkamp, J. Lankelma, J. C. Beers, M. Heijn, E. Boven, K. Hoekman, and H. M. Pinedo. A doxorubicin–CNGRC–peptide conjugate with prodrug properties. Biochem. Pharmacol. 63:897–908 (2002).

    Article  PubMed  Google Scholar 

  40. S. Boisseau, K. Mabrouk, N. Ram, N. Garmy, V. Collin, A. Tadmouri, M. Mikati, J.M. Sabatier, M. Ronjat, J. Fantini, and M. De Waard. Cell penetration properties of maurocalcine, a natural venom peptide active on the intracellular ryanodine receptor. Biochim. Biophys. Acta. 1758:308–319 (2006).

    Article  PubMed  CAS  Google Scholar 

  41. G. A. Gusarova, I. C. Wang, M. L. Major, V. V. Kalinichenko, T. Ackerson, V. Petrovic, and R. H. Costa. A cell-penetrating ARF peptide inhibitor of FoxM1 in mouse hepatocellular carcinoma treatment. J. Clin. Invest. 117:99–111 (2007).

    Article  PubMed  CAS  Google Scholar 

  42. Y. Kim, A. M. Lillo, S. C. Steiniger, Y. Liu, C. Ballatore, A. Anichini, R. Mortarini, G. F. Kaufmann, B. Zhou, B. Felding-Habermann, and K. D. Janda. Targeting heat shock proteins on cancer cells: selection, characterization, and cell-penetrating properties of a peptidic GRP78 ligand. Biochemistry. 45:9434–9444 (2006).

    Article  PubMed  CAS  Google Scholar 

  43. S. E. Perea, O. Reyes, Y. Puchades, O. Mendoza, N. S. Vispo, I. Torrens, A. Santos, R. Silva, B. Acevedo, E. Lopez, V. Falcon, and D. F. Alonso. Antitumor effect of a novel proapoptotic peptide that impairs the phosphorylation by the protein kinase 2 (casein kinase 2). Cancer Res. 64:7127–7129 (2004).

    Article  PubMed  CAS  Google Scholar 

  44. M. Hirose, M. Takatori, Y. Kuroda, M. Abe, E. Murata, T. Isada, K. Ueda, K. Shigemi, M. Shibazaki, F. Shimizu, M. Hirata, K. Fukazawa, M. Sakaguchi, K. Kageyama, and Y. Tanaka. Effect of synthetic cell-penetrating peptides on TrkA activity in PC12 cells. J. Pharmacol. Sci. 106:107–113 (2008).

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was funded by Inserm and a grant from the Life Sciences Division innovation program of the Commissariat à l’Energie Atomique. SA acknowledges the support of the Délégation Générale de la Recherche Scientifique et Technique (Tunisia) and the University of Monastir and University Joseph Fourier for their joint PhD training program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel De Waard.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary figure

(GIF 21 KB).

Low resolution image file (TIF 190 KB).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aroui, S., Ram, N., Appaix, F. et al. Maurocalcine as a Non Toxic Drug Carrier Overcomes Doxorubicin Resistance in the Cancer Cell Line MDA-MB 231. Pharm Res 26, 836–845 (2009). https://doi.org/10.1007/s11095-008-9782-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9782-1

Key words

Navigation