Skip to main content

Advertisement

Log in

Chitosan-Alginate Scaffold Culture System for Hepatocellular Carcinoma Increases Malignancy and Drug Resistance

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Hepatocellular carcinoma (HCC) is a prevalent solid malignancy. Critically needed discovery of new therapeutics has been hindered by lack of an in vitro cell culture system that can effectively represent the in vivo tumor microenvironment. To address this need, a 3D in vitro HCC model was developed using a biocompatible, chitosan-alginate (CA) scaffold cultured with human HCC cell lines.

Methods

The correlation between the cell function, such as secretion of growth factors and production of ECM in vitro, and the tumor growth and blood vessel recruitment in vivo was investigated.

Results

HCC cells grown on 3D CA scaffolds demonstrated morphological characteristics and increased expression of markers of highly malignant cells. Implantation of CA scaffolds cultured with human HCC cells in mice showed accelerated tumor growth. Histology revealed marked differences in morphology and organization of newly formed blood vessels between tumors produced by different pre-cultured conditions. Resistance to doxorubicin was significantly pronounced in CA scaffold-cultured HCC cells compared to 2D or Matrigel cultured HCC cells.

Conclusions

This 3D model of HCC, with its ability to more closely mimic the in vivo tumor behavior, may serve as an invaluable model for study and application of novel anticancer therapeutics against HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Spangenberg HC, Thimme R, Blum HE. Targeted therapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2009;6:423–32.

    Article  CAS  PubMed  Google Scholar 

  2. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.

    Article  CAS  PubMed  Google Scholar 

  3. Frese KK, Tuveson DA. Maximizing mouse cancer models. Nat Rev Cancer. 2007;7:654–8.

    Article  Google Scholar 

  4. Wu L, Tang Z-Y, Li Y. Experimental models of hepatocellular carcinoma: developments and evolution. J Cancer Res Clin Oncol. 2009;135:969–81.

    Article  PubMed  Google Scholar 

  5. Fischbach C, Chen R, Matsumoto T, et al. Engineering tumors with 3D scaffolds. Nat Med. 2007;4:855–60.

    Article  CAS  Google Scholar 

  6. Horning JL, Sahoo SK, Vijayaraghavalu S, Dimitrijevic S, Vasir JK, Jain TK, et al. 3-D tumor model for in vitro evaluation of anticancer drugs. Mol Pharm. 2008;5:849–62.

    Article  CAS  PubMed  Google Scholar 

  7. Smalley K, Lioni M, Herlyn M. Life isn’t flat: taking cancer biology to the next dimension. In Vitro Cell Dev Biol Anim. 2006;42:242–7.

    Article  CAS  PubMed  Google Scholar 

  8. Xu F, Burg K. Three-dimensional polymeric systems for cancer cell studies. Cytotechnology. 2007;54:135–43.

    Article  PubMed  Google Scholar 

  9. Tredan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst Monogr. 2007;99:1441–54.

    CAS  Google Scholar 

  10. Wu XZ, Chen D, Xie GR. Extracellular matrix remodeling in hepatocellular carcinoma: effects of soil on seed? Med Hypotheses. 2006;66:1115–20.

    Article  CAS  PubMed  Google Scholar 

  11. Desoize B, Jardillier J-C. Multicellular resistance: a paradigm for clinical resistance? Crit Rev Oncol Hematol. 2000;36:193–207.

    Article  CAS  PubMed  Google Scholar 

  12. Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer. 2006;6:583–92.

    Article  CAS  PubMed  Google Scholar 

  13. Meads MB, Gatenby RA, Dalton WS. Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer. 2009;9:665–74.

    Article  CAS  PubMed  Google Scholar 

  14. Sermeus A, Cosse JP, Crespin M, Mainfroid V, de Longueville F, Ninane N, et al. Hypoxia induces protection against etoposide-induced apoptosis: molecular profiling of changes in gene expression and transcription factor activity. Mol Cancer. 2008;7:27.

    Article  PubMed  Google Scholar 

  15. Lund AW, Bl Y, Stegemann JP, Plopper GE. The natural and engineered 3D microenvironment as a regulatory cue during stem cell fate determination. Tissue Eng B Rev. 2009;15:371–80.

    Article  Google Scholar 

  16. Zhang Y, Zhang M. Cell growth and function on calcium phosphate reinforced chitosan scaffolds. J Mater Sci Mater Med. 2004;15:255–60.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Y, Zhang MQ. Microstructural and mechanical characterization of chitosan scaffolds reinforced by calcium phosphates. J Non-Cryst Solids. 2001;282:159–64.

    Article  CAS  Google Scholar 

  18. Li Z, Zhang M. Chitosan-alginate as scaffolding material for cartilage tissue engineering. J Biomed Mater Res A. 2005;75A:485–93.

    Article  CAS  Google Scholar 

  19. Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M. Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials. 2005;26:3919–28.

    Article  CAS  PubMed  Google Scholar 

  20. Li Z, Gunn J, Chen M-H, Cooper A, Zhang M. On-site alginate gelation for enhanced cell proliferation and uniform distribution in porous scaffolds. J Biomed Mater Res A. 2008;86A:552–9.

    Article  CAS  Google Scholar 

  21. Li Z, Leung M, Hopper R, Ellenbogen R, Zhang M. Feeder-free self-renewal of human embryonic stem cells in 3D porous natural polymer scaffolds. Biomaterials. 2010;31:404–12.

    Article  CAS  PubMed  Google Scholar 

  22. Chau Y, Padera RF, Dang NM, Langer R. Antitumor efficacy of a novel polymer-peptide-drug conjugate in human tumor xenograft models. Int J Cancer. 2006;118:1519–26.

    Article  CAS  PubMed  Google Scholar 

  23. Waugh DJJ, Wilson C. The Interleukin-8 pathway in cancer. Clin Cancer Res. 2008;14:6735–41.

    Article  CAS  PubMed  Google Scholar 

  24. Presta M, Dell’Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 2005;16:159–78.

    Article  CAS  PubMed  Google Scholar 

  25. Kerbel RS. Tumor angiogenesis. N Engl J Med. 2008;358:2039–49.

    Article  CAS  PubMed  Google Scholar 

  26. Capurro M, Wanless IR, Sherman M, Deboer G, Shi W, Miyoshi E, et al. Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology. 2003;125:89–97.

    Article  CAS  PubMed  Google Scholar 

  27. Wang XY, Degos F, Dubois S, Tessiore S, Allegretta M, Guttmann RD, et al. Glypican-3 expression in hepatocellular tumors: diagnostic value for preneoplastic lesions and hepatocellular carcinomas. Hum Pathol. 2006;37:1435–41.

    Article  CAS  PubMed  Google Scholar 

  28. Nassar A, Cohen C, Siddiqui MT. Utility of glypican-3 and survivin in differentiating hepatocellular carcinoma from benign and preneoplastic hepatic lesions and metastatic carcinomas in liver fine-needle aspiration biopsies. Diagn Cytopathol. 2009;37:629–35.

    Article  CAS  PubMed  Google Scholar 

  29. Hodgson E. A textbook of modern toxicology. 3rd ed: Wiley-Interscience; 2004.

  30. Lin R-Z, Chang H-Y. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J. 2008;3:1172–84.

    Article  CAS  PubMed  Google Scholar 

  31. Shirakawa H, Suzuki H, Shimomura M, Kojima M, Gotohda N, Takahashi S, et al. Glypican-3 expression is correlated with poor prognosis in hepatocellular carcinoma. Cancer Sci. 2009;100:1403–7.

    Article  CAS  PubMed  Google Scholar 

  32. Lai J-P, Sandhu DS, Yu C, Han T, Moser CD, Jackson KK, et al. Sulfatase 2 up-regulates glypican 3, promotes fibroblast growth factor signaling, and decreases survival in hepatocellular carcinoma. Hepatology. 2008;47:1211–22.

    Article  CAS  PubMed  Google Scholar 

  33. Nagy JA, Chang SH, Dvorak AM, Dvorak HF. Why are tumour blood vessels abnormal and why is it important to know? Br J Cancer. 2009;100:865–9.

    Article  CAS  PubMed  Google Scholar 

  34. Sangro B. Refined tools for the treatment of hepatocellular carcinoma. J Hepatol. 2005;42:629–31.

    Article  PubMed  Google Scholar 

  35. Varela M, Real MI, Burrel M, Forner A, Sala M, Brunet M, et al. Chemoembolization of hepatocellular carcinoma with drug eluting beads: efficacy and doxorubicin pharmacokinetics. J Hepatol. 2007;46:474–81.

    Article  CAS  PubMed  Google Scholar 

  36. Chuu J-J, Liu J, Tsou M-H, Huang C-L, Chen C-P, Wang H-S, et al. Effects of paclitaxel and doxorubicin in histocultures of hepatocellular carcinomas. J Biomed Sci. 2007;14:233–44.

    Article  CAS  PubMed  Google Scholar 

  37. Schoonen WGEJ, de Roos JADM, Westerink WMA, Débiton E. Cytotoxic effects of 110 reference compounds on HepG2 cells and for 60 compounds on HeLa, ECC-1 and CHO cells.: II Mechanistic assays on NAD(P)H, ATP and DNA contents. Toxicol In Vitro. 2005;19:491–503.

    Article  CAS  PubMed  Google Scholar 

  38. Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA. Multicellular tumor spheroids: an underestimated tool is catching up again. J. Biotechnol. 2010; In Press, Corrected Proof.

  39. Hennessy M, Spiers JP. A primer on the mechanics of P-glycoprotein the multidrug transporter. Pharmacol Res. 2007;55:1–15.

    Article  CAS  PubMed  Google Scholar 

  40. Patel K, Tannock I. The influence of P-glycoprotein expression and its inhibitors on the distribution of doxorubicin in breast tumors. 2009. p. 356.

  41. Baguley BC. Multidrug resistance in cancer. Meth Mol Biol. 2010;596:1–14.

    Article  CAS  Google Scholar 

  42. Jurisicova A, Lee HJ, D’Estaing SG, Tilly J, Perez GI. Molecular requirements for doxorubicin-mediated death in murine oocytes. Cell Death Differ. 2006;13:1466–74.

    Article  CAS  PubMed  Google Scholar 

  43. Wichert A, Stege A, Midorikawa Y, Holm PS, Lage H. Glypican-3 is involved in cellular protection against mitoxantrone in gastric carcinoma cells. Oncogene. 2003;23:945–55.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported in part by NIH grants (R01EB006043 and R01CA134213). Jim Park and Omid Veiseh would like to acknowledge support through the ASA Foundation Fellowship Research Award and an NIH training grant (T32CA138312), respectively. Additionally, we would like to acknowledge the use of the SEM at the Dept of Materials Science and Engineering and Keck Microscopy Imaging Facility at the University of Washington.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miqin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leung, M., Kievit, F.M., Florczyk, S.J. et al. Chitosan-Alginate Scaffold Culture System for Hepatocellular Carcinoma Increases Malignancy and Drug Resistance. Pharm Res 27, 1939–1948 (2010). https://doi.org/10.1007/s11095-010-0198-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0198-3

KEY WORDS

Navigation