Skip to main content

Advertisement

Log in

Inorganic Nanoparticles in Cancer Therapy

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Nanotechnology is an evolving field with enormous potential for biomedical applications. The growing interest to use inorganic nanoparticles in medicine is due to the unique size- and shape-dependent optoelectronic properties. Herein, we will focus on gold, silver and platinum nanoparticles, discussing recent developments for therapeutic applications with regard to cancer in terms of nanoparticles being used as a delivery vehicle as well as therapeutic agents. We will also discuss some of the key challenges to be addressed in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

REFERENCES

  1. Giljohann DA, Mirkin CA. Drivers of biodiagnostic development. Nature. 2009;462:461–4.

    Article  CAS  PubMed  Google Scholar 

  2. Patra CR, Bhattacharya R, Mukhopadhyay D, Mukherjee P. Application of gold nanoparticles for targeted therapy in cancer. J Biomed Nanotechnol. 2008;4:99–132.

    CAS  Google Scholar 

  3. Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, et al. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 2004;11:169–83.

    Article  CAS  PubMed  Google Scholar 

  4. Mahdihassan S. Cinnabar-gold as the best alchemical drug of longevity, called Makaradhwaja in India. Am J Chin Med. 1985;13:93–108.

    Article  CAS  PubMed  Google Scholar 

  5. Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104:293–346.

    Article  CAS  PubMed  Google Scholar 

  6. Fricker SP, Buckley RG. Comparison of two colorimetric assays as cytotoxicity endpoints for an in vitro screen for antitumour agents. Anticancer Res. 1996;16:3755–60.

    CAS  PubMed  Google Scholar 

  7. Bhattacharya R, Mukherjee P. Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev. 2008;60:1289–306.

    Article  CAS  PubMed  Google Scholar 

  8. Felson DT, Anderson JJ, Meenan RF. The comparative efficacy and toxicity of second-line drugs in rheumatoid arthritis: results of two metaanalyses. Arthritis Rheum. 1990;33:1449–61.

    Article  CAS  PubMed  Google Scholar 

  9. Frank Shaw C. Gold-based therapeutic agents. Chem Rev. 1999;99:2589–600.

    Article  CAS  Google Scholar 

  10. Berners-Price SJ, Girard GR, Hill DT, Sutton BM, Jarrett PS, Faucette LF, et al. Cytotoxicity and antitumor activity of some tetrahedral bis(diphosphino)gold(I) chelates. J Med Chem. 1990;33:1386–92.

    Article  CAS  PubMed  Google Scholar 

  11. Berners-Price SJ, Sadler PJ. Interaction of the antitumor Au(I) complex with human blood plasma, red cells, and lipoproteins: H NMR studies. J Inorg Biochem. 1987;31:267–81.

    Article  CAS  PubMed  Google Scholar 

  12. Berners-Price SJ, Norman RE, Sadler PJ. The autoxidation and proton dissociation constants of tertiary diphosphines: relevance to biological activity. J Inorg Biochem. 1987;31:197–209.

    Article  CAS  PubMed  Google Scholar 

  13. Haiduc I, Silvestru C. Rhodium, iridium, copper and gold antitumor organometallic compounds (review). In Vivo. 1989;3:285–94.

    CAS  PubMed  Google Scholar 

  14. Mukherjee P, Bhattacharya R, Wang P, Wang L, Basu S, Nagy JA, et al. Antiangiogenic properties of gold nanoparticles. Clin Cancer Res. 2005;11:3530–4.

    Article  CAS  PubMed  Google Scholar 

  15. Azzaroni O, Brown AA, Cheng N, Wei A, Jonas AM, Huck WTS. Synthesis of gold nanoparticles inside polyelectrolyte brushes. J Mat Chem. 2007;17:3433–9.

    Article  CAS  Google Scholar 

  16. Esparza R, Rosas G, Lopez Fuentes M, Salnchez Ramilrez JF, Pal U, Ascencio JA, et al. Synthesis of gold nanoparticles with different atomistic structural characteristics. Mater Charact. 2007;58:694–700.

    Article  CAS  Google Scholar 

  17. Tuval T, Gedanken A. A microwave-assisted polyol method for the deposition of silver nanoparticles on silica spheres. Nanotechnology. 2007;18:255601–8.

    Article  CAS  Google Scholar 

  18. Jin Y, Wang P, Yin D, Liu J, Qin L, Yu N, et al. Gold nanoparticles prepared by sonochemical method in thiol-functionalized ionic liquid. Colloid Surf A Physicochem Eng Aspects. 2007;302:366–70.

    Article  CAS  Google Scholar 

  19. Abyaneh MK, Paramanik D, Varma S, Gosavi SW, Kulkarni SK. Formation of gold nanoparticles in polymethylmethacrylate by UV irradiation. J Phys D Appl Phys. 2007;40:3771–9.

    Article  CAS  Google Scholar 

  20. Giorgetti E, Giusti A, Laza SC, Marsili P, Giammanco F. Production of colloidal gold nanoparticles by picosecond laser ablation in liquids. Phys Status Solidi A. 2007;204:1693–8.

    Article  CAS  Google Scholar 

  21. Nakamoto M, Yamamoto M, Fukusumi M. Thermolysis of gold(I) thiolate complexes producing novel gold nanoparticles passivated by alkyl groups. Chem Commun (Camb). 2002;1622–1623.

  22. Mandal TK, Fleming MS, Walt DR. Preparation of polymer coated gold nanoparticles by surface-confined living radical polymerization at ambient temperature. Nano Lett. 2002;2:3–7.

    Article  Google Scholar 

  23. Warren SC, Jackson AC, Cater-Cyker ZD, DiSalvo FJ, Wiesner U. Nanoparticle synthesis via the photochemical polythiol process. J Am Chem Soc. 2007;129:10072–3.

    Article  CAS  PubMed  Google Scholar 

  24. Peter PE, John Meurig T. Gold in a metallic divided state—from faraday to present-day nanoscience13. Angew Chem Int Ed. 2007;46:5480–6.

    Article  Google Scholar 

  25. Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc. 1951;11:55–75.

    Article  Google Scholar 

  26. Yonezawa T, Kunitake T. Practical preparation of anionic mercapto ligand-stabilized gold nanoparticles and their immobilization. Colloid Surf A Physicochem Eng Aspects. 1999;149:193–9.

    Article  CAS  Google Scholar 

  27. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc Chem Commun. 1994;7:801–2.

    Article  Google Scholar 

  28. Mukherjee P, Patra CR, Ghosh A, Kumar R, Sastry M. Characterization and catalytic activity of gold nanoparticles synthesized by autoreduction of aqueous chloroaurate ions with fumed silica. Chem Mater. 2002;14:1678–84.

    Article  CAS  Google Scholar 

  29. Byrappa K, Ohara S, Adschiri T. Nanoparticles synthesis using supercritical fluid technology—towards biomedical applications. Adv Drug Deliv Rev. 2008;60:299–327.

    Article  CAS  PubMed  Google Scholar 

  30. Rowe MD, Thamm DH, Kraft SL, Boyes SG. Polymer-modified gadolinium metal-organic framework nanoparticles used as multifunctional nanomedicines for the targeted imaging and treatment of cancer. Biomacromolecules. 2009;10:983–93.

    Article  CAS  PubMed  Google Scholar 

  31. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, et al. Bioreduction of AuCl4—ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed. 2001;40:3585–8.

    Article  CAS  Google Scholar 

  32. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, et al. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett. 2001;1:515–9.

    Article  CAS  Google Scholar 

  33. Rosi NL, Mirkin CA. Nanostructures in biodiagnostics. Chem Rev. 2005;105:1547–62.

    Article  CAS  PubMed  Google Scholar 

  34. Alivisatos P. The use of nanocrystals in biological detection. Nat Biotechnol. 2004;22:47–52.

    Article  CAS  PubMed  Google Scholar 

  35. Katz E, Willner I. Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed. 2004;43:6042–108.

    Article  CAS  Google Scholar 

  36. Whitesides GM. The ‘right’ size in nanobiotechnology. Nat Biotechnol. 2003;21:1161–5.

    Article  CAS  PubMed  Google Scholar 

  37. Link S, El-Sayed MA. Optical properties and ultrafast dynamics of metallic nanocrystals. Ann Rev Physi Chem. 2003;54:331–66.

    Article  CAS  Google Scholar 

  38. Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B. 2003;107:668–77.

    Article  CAS  Google Scholar 

  39. Jain PK, ElSayed IH, El-Sayed MA. Au nanoparticles target cancer. Nano Today. 2007;2:18–29.

    Article  Google Scholar 

  40. Liz-Marzán LM. Nanometals: formation and color. Mater Today. 2004;7:26–31.

    Article  Google Scholar 

  41. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B. 2006;110:7238–48.

    Article  CAS  PubMed  Google Scholar 

  42. Stober W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci. 1968;26:62–9.

    Article  Google Scholar 

  43. Brongersma ML. Nanoscale photonics: nanoshells: gifts in a gold wrapper. Nat Mater. 2003;2:296–7.

    Article  CAS  PubMed  Google Scholar 

  44. Link S, El-Sayed MA. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem. 2000;19:409–53.

    Article  CAS  Google Scholar 

  45. El-Sayed MA. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res. 2001;34:257–64.

    Article  CAS  PubMed  Google Scholar 

  46. Muller-Dethlefs K, Hobza P. Noncovalent interactions: a challenge for experiment and theory. Chem Rev. 2000;100:143–67.

    Article  PubMed  CAS  Google Scholar 

  47. Sastry M, Rao M, Ganesh KN. Electrostatic assembly of nanoparticles and biomacromolecules. Acc Chem Res. 2002;35:847–55.

    Article  CAS  PubMed  Google Scholar 

  48. Levy Y, Onuchic JN. Mechanisms of protein assembly: lessons from minimalist models. Acc Chem Res. 2006;39:135–42.

    Article  CAS  PubMed  Google Scholar 

  49. Bain CD, Evall J, Whitesides GM. Formation of monolayers by the coadsorption of thiols on gold: variation in the head group, tail group, and solvent. J Am Chem Soc. 1989;111:7155–64.

    Article  CAS  Google Scholar 

  50. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev. 2005;105:1103–69.

    Article  CAS  PubMed  Google Scholar 

  51. Liu Y, Miyoshi H, Nakamura M. Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int J Cancer. 120: 2527–2537.

  52. Paunesku T, Ke T, Dharmakumar R, Mascheri N, Wu A, Lai B, et al. Gadolinium-conjugated TiO2-DNA oligonucleotide nanoconjugates show prolonged intracellular retention period and T1-weighted contrast enhancement in magnetic resonance images. Nanomedicine. 2008;4:201–7.

    CAS  PubMed  Google Scholar 

  53. Warner JH, Hoshino A, Yamamoto K, Tilley RD. Water-soluble photoluminescent silicon quantum dots. Angew Chem Int Ed. 2005;44:4550–4.

    Article  CAS  Google Scholar 

  54. Shubayev VI, Pisanic 2 TR, Jin S. Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev. 2009;61:467–77.

    Article  CAS  PubMed  Google Scholar 

  55. Arbab AS, Liu W, Frank JA. Cellular magnetic resonance imaging: current status and future prospects. Expert Rev Med Devices. 2006;3:427–39.

    Article  CAS  PubMed  Google Scholar 

  56. McCarthy JR, Kelly KA, Sun EY, Weissleder R. Targeted delivery of multifunctional magnetic nanoparticles. Nanomedicine. 2007;2:153–67.

    Article  CAS  PubMed  Google Scholar 

  57. Gao X, Cui Y, Levenson RM, Chung LWK, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004;22:969–76.

    Article  CAS  PubMed  Google Scholar 

  58. Thrall JH. Nanotechnology and medicine. Radiology. 2004;230:315–8.

    Article  PubMed  Google Scholar 

  59. Jiang W, KimBetty YS, Rutka JT, Warren CW. C. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol. 2008;3:145–50.

    Article  CAS  PubMed  Google Scholar 

  60. Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza YY, et al. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol. 2009;4:669–73.

    Article  CAS  PubMed  Google Scholar 

  61. Smithpeter C, Dunn A, Drezek R, Collier T, Richards-Kortum R. Near real time confocal microscopy of cultured amelanotic cells: sources of signal, contrast agents and limits of contrast. J Biomed Opt. 1998;3:429–36.

    Article  Google Scholar 

  62. Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, et al. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 2003;63:1999–2004.

    CAS  PubMed  Google Scholar 

  63. Collier T, Lacy A, Richards-Kortum R, Malpica A, Follen M. Near real-time confocal microscopy of amelanotic tissue: detection of dysplasia in ex vivo cervical tissue. Acad Radiol. 2003;9:504–12.

    Article  Google Scholar 

  64. Tearney GJ, Brezinski ME, Bouma BE, Boppart SA, Pitris C, Southern JF, et al. In vivo endoscopic optical biopsy with optical coherence tomography. Science. 1997;276:2037–9.

    Article  CAS  PubMed  Google Scholar 

  65. Liang C, Descour MR, Sung KB, Richards-Kortum R. Fiber confocal reflectance microscope (FCRM) for in-vivo imaging. Opt Express. 2001;9:821–30.

    Article  CAS  PubMed  Google Scholar 

  66. Grizzle WE, Manne U, Jhala NC, Weiss HL. Molecular characterization of colorectal neoplasia in translational research. Arch Pathol Lab Med. 2001;125:91–8.

    CAS  PubMed  Google Scholar 

  67. Maruo T, Yamasaki M, Ladines-Llave CA, Mochizuki M. Immunohistochemical demonstration of elevated expression of epidermal growth factor receptor in the neoplastic changes of cervical squamous epithelium. Cancer. 1992;69:1182–7.

    Article  CAS  PubMed  Google Scholar 

  68. Goel R, Shah N, Visaria R, Paciotti GF, Bischof JC. Biodistribution of TNF-α-coated gold nanoparticles in an in vivo model system. Nanomedicine. 2009;4:401–10.

    Article  CAS  PubMed  Google Scholar 

  69. Kumar R, Roy I, Ohulchanskky TY, Vathy LA, Bergey EJ, Sajjad M, et al. In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS Nano. 2010;4:699–708.

    Article  CAS  PubMed  Google Scholar 

  70. Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc. 2006;128:2115–20.

    Article  CAS  PubMed  Google Scholar 

  71. Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev. 2009;61:428–37.

    Article  CAS  PubMed  Google Scholar 

  72. Fischer NO, McIntosh CM, Simard JM, Rotello VM. Inhibition of chymotrypsin through surface binding using nanoparticle-based receptors. Proc Natl Acad Sci USA. 2002;99:5018–23.

    Article  CAS  PubMed  Google Scholar 

  73. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751–60.

    Article  CAS  PubMed  Google Scholar 

  74. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5:341–54.

    Article  CAS  PubMed  Google Scholar 

  75. Herbst RS, Kim ES, Harari PM. IMC-C225, an anti-epidermal growth factor receptor monoclonal antibody, for treatment of head and neck cancer. Expert Opin Biol Ther. 2001;1:719–32.

    Article  CAS  PubMed  Google Scholar 

  76. Patra CR, Bhattacharya R, Wang E, Katarya A, Lau JS, Dutta S, et al. Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res. 2008;68:1970–8.

    Article  CAS  PubMed  Google Scholar 

  77. Toffoli G, Cernigoi C, Russo A, Gallo A, Bagnoli M, Boiocchi M. Overexpression of folate binding protein in ovarian cancers. Int J Cancer. 1997;74:193–8.

    Article  CAS  PubMed  Google Scholar 

  78. Coney LR, Tomassetti A, Carayannopoulos L, Frasca V, Kamen BA, Colnaghi MI, et al. Cloning of a tumor-associated antigen: MOv18 and MOv19 antibodies recognize a folate-binding protein. Cancer Res. 1991;51:6125–32.

    CAS  PubMed  Google Scholar 

  79. Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem. 2005;338:284–93.

    Article  CAS  PubMed  Google Scholar 

  80. Gabizon A, Shmeeda H, Horowitz AT, Zalipsky S. Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Adv Drug Deliv Rev. 2004;56:1177–92.

    Article  CAS  PubMed  Google Scholar 

  81. Elnakat H, Ratnam M. Distribution, functionality and gene regulation of folate receptor isoforms: Implications in targeted therapy. Adv Drug Deliv Rev. 2004;56:1067–84.

    Article  CAS  PubMed  Google Scholar 

  82. Kamen BA, Smith AK. A review of folate receptor alpha cycling and 5-methyltetrahydrofolate accumulation with an emphasis on cell models in vitro. Adv Drug Deliv Rev. 2004;56:1085–97.

    Article  CAS  PubMed  Google Scholar 

  83. Dixit V, Van Den Bossche J, Sherman DM, Thompson DH, Andres RP. Synthesis and grafting of thioctic acid-PEG-folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cells. Bioconjug Chem. 2006;17:603–9.

    Article  CAS  PubMed  Google Scholar 

  84. Guo H, Qian H, Idris NM, Zhang Y. Singlet oxygen-induced apoptosis of cancer cells using upconversion fluorescent nanoparticles as a carrier of photosensitizer. Nanomedicine. 2010;6:486–95.

    CAS  PubMed  Google Scholar 

  85. Wu Q, Cao H, Luan Q, Zhang J, Wang Z, Warner JH, et al. Biomolecule-assisted synthesis of water-soluble silver nanoparticles and their biomedical applications. Inorg Chem. 2008;47:5882–8.

    Article  CAS  PubMed  Google Scholar 

  86. Melnikov OV, Gorbenko OY, MÌŒarkelova MN, Kaul AR, Atsarkin VA, Demidov VV, et al. Ag-doped manganite nanoparticles: new materials for temperature-controlled medical hyperthermia. J Biomed Mater Res A. 2009;91:1048–55.

    CAS  PubMed  Google Scholar 

  87. Rieter WJ, Pott KM, Taylor KM, Lin W. Nanoscale coordination polymers for platinum-based anticancer drug delivery. J Am Chem Soc. 2008;130:11584–5.

    Article  CAS  PubMed  Google Scholar 

  88. Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci USA. 2008;105:17356–61.

    Article  CAS  PubMed  Google Scholar 

  89. Jabr-Milane LS, van Vlerken LE, Yadav S, Amiji MM. Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treat Rev. 2008;34:592–602.

    Article  CAS  PubMed  Google Scholar 

  90. Bussolino F, Mantovani A, Persico G. Molecular mechanisms of blood vessel formation. Trends Biochem Sci. 1997;22:251–6.

    Article  CAS  PubMed  Google Scholar 

  91. Risau W. Mechanisms of angiogenesis. Nature. 1997;386:671–4.

    Article  CAS  PubMed  Google Scholar 

  92. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun. 1989;161:851–8.

    Article  CAS  PubMed  Google Scholar 

  93. Gupta MK, Qin RY. Mechanism and its regulation of tumor-induced angiogenesis. World J Gastroenterol. 2003;9:1144–55.

    CAS  PubMed  Google Scholar 

  94. Nyberg P, Xie L, Kalluri R. Endogenous inhibitors of angiogenesis. Cancer Res. 2005;65:3967–79.

    Article  CAS  PubMed  Google Scholar 

  95. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Susan Harvey V, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983;219:983–5.

    Article  CAS  PubMed  Google Scholar 

  96. Folkman J. Tumor angiogensis: role in regulation of tumor growth. Symp Soc Dev Biol Soc Dev Biol Symp. 1974;30:43–52.

    CAS  Google Scholar 

  97. Folkman J. Tumor angiogenesis factor. Cancer Res. 1974;34:2109–13.

    CAS  PubMed  Google Scholar 

  98. Yorozuya K, Kubota T, Watanabe M, Hasegawa H, Ozawa S, Kitajima M, et al. TSU-68 (SU6668) inhibits local tumor growth and liver metastasis of human colon cancer xenografts via anti-angiogenesis. Oncol Rep. 2005;14:677–82.

    CAS  PubMed  Google Scholar 

  99. Kerbel RS. Antiangiogenic drugs and current strategies for the treatment of lung cancer. Semin Oncol. 2004;31:54–60.

    Article  CAS  PubMed  Google Scholar 

  100. Woude GFV, Kelloff GJ, Ruddon RW, Koo H-M, Sigman CC, Barrett JC, et al. Reanalysis of cancer drugs. Clin Cancer Res. 2004;10:3897–907.

    Article  PubMed  Google Scholar 

  101. Bhattacharya R, Patra CR, Verma R, Kumar S, Greipp PR, Mukherjee P. Gold nanoparticles inhibit the proliferation of multiple myeloma cells. Adv Mater. 2007;19:711–6.

    Article  CAS  Google Scholar 

  102. Hideshima T, Bradner JE, Wong J, Chauhan D, Richardson P, Schreiber SL, et al. Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci USA. 2005;102:8567–72.

    Article  CAS  PubMed  Google Scholar 

  103. Hideshima T, Chauhan D, Richardson P, Anderson KC. Identification and validation of novel therapeutic targets for multiple myeloma. J Clin Oncol. 2005;23:6345–50.

    Article  CAS  PubMed  Google Scholar 

  104. Richardson PG, Mitsiades C, Hideshima T, Anderson KC. Bortezomib: proteasome inhibition as an effective anticancer therapy. Annu Rev Med. 2006;57:33–47.

    Article  CAS  PubMed  Google Scholar 

  105. Mukherjee P, Bhattacharya R, Bone N, Lee YK, Patra C, Wang S, et al. Potential therapeutic application of gold nanoparticles in B-chronic lymphocytic leukemia (BCLL): Enhancing apoptosis. J Nanobiotechnol. 2007;5:1–13.

    Article  CAS  Google Scholar 

  106. Van Hoe L, Van Cutsem E, Vergote I, Marchal G, Baert AL. Reporting on the results of cancer treatment in patients with metastatic liver disease: proposal of symmetric size-dependent CT-criteria for response. Ann Oncol. 1996;7:871–2.

    PubMed  Google Scholar 

  107. Donaldson SS. Nutritional consequences of radiotherapy. Cancer Res. 1977;37:2407–13.

    CAS  PubMed  Google Scholar 

  108. Hamilton A, Hortobagyi G. Chemotherapy: what progress in the last 5 years? J Clin Oncol. 2005;23:1760–75.

    Article  CAS  PubMed  Google Scholar 

  109. Mirza AN, Fornage BD, Sneige N, Kuerer HM, Newman LA, Ames FC, et al. Radiofrequency ablation of solid tumors. Cancer J. 2001;7:95–102.

    CAS  PubMed  Google Scholar 

  110. Overgaard J. The current and potential role of hyperthermia in radiotherapy. Int J Radiat Oncol Biol Phys. 1989;16:535–49.

    Article  CAS  PubMed  Google Scholar 

  111. Westermann AM, Jones EL, Schem BC, Van Der Steen-Banasik EM, Koper P, Mella O, et al. First results of triple-modality treatment combining radiotherapy, chemotherapy, and hyperthermia for the treatment of patients with stage IIB, III, and IVA cervical carcinoma. Cancer. 2005;104:763–70.

    Article  CAS  PubMed  Google Scholar 

  112. Bertone V, Barni S, Silvotti MG, Freitas I, Mathé G, Pontiggia P. Hyperthermic effects on the human metastatic liver: a TEM study. Anticancer Res. 1997;17:4713–6.

    CAS  PubMed  Google Scholar 

  113. He X, Wolkers WF, Crowe JH, Swanlund DJ, Bischof JC. In situ thermal denaturation of proteins in dunning AT-1 prostate cancer cells: implication for hyperthermic cell injury. Ann Biomed Eng. 2004;32:1384–98.

    Article  PubMed  Google Scholar 

  114. Christophi C, Winkworth A, Muralihdaran V, Evans P. The treatment of malignancy by hyperthermia. J Surg Oncol. 1998;7:83–90.

    Article  CAS  Google Scholar 

  115. Jordan A, Scholz R, Wust P, Fähling H, Krause J, Wlodarczyk W, et al. Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. Int J Hyperthermia. 1997;13:587–605.

    Article  CAS  PubMed  Google Scholar 

  116. Link S, El-Sayed MA. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B. 1999;103:8410–26.

    Article  CAS  Google Scholar 

  117. El-Sayed IH, Huang X, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 2005;5:829–34.

    Article  CAS  PubMed  Google Scholar 

  118. El-Sayed IH, Huang X, El-Sayed MA. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 2006;239:129–35.

    Article  CAS  PubMed  Google Scholar 

  119. Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem Photobiol. 2006;82:412–7.

    Article  CAS  PubMed  Google Scholar 

  120. Gupta AK, Naregalkar RR, Vaidya VD, Gupta M. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine. 2007;2:23–39.

    Article  CAS  PubMed  Google Scholar 

  121. Lu AH, Salabas EL, Schuth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed. 2007;46:1222–44.

    Article  CAS  Google Scholar 

  122. Huber DL. Synthesis, properties, and applications of iron nanoparticles. Small. 2005;1:482–501.

    Article  CAS  PubMed  Google Scholar 

  123. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021.

    Article  CAS  PubMed  Google Scholar 

  124. Shinkai M. Functional magnetic particles for medical application. J Biosci Bioeng. 2002;94:606–13.

    CAS  PubMed  Google Scholar 

  125. Nam JM, Thaxton CS, Mirkin CA. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science. 2003;301:1884–6.

    Article  CAS  PubMed  Google Scholar 

  126. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA. 2003;100:13549–54.

    Article  CAS  PubMed  Google Scholar 

  127. Visaria RK, Griffin RJ, Williams BW, Ebbini ES, Paciotti GF, Song CW, et al. Enhancement of tumor thermal therapy using gold nanoparticle-assisted tumor necrosis factor-α delivery. Mol Cancer Ther. 2006;5:1014–20.

    Article  CAS  PubMed  Google Scholar 

  128. Cheng FY, Chen CT, Yeh CS. Comparative efficiencies of photothermal destruction of malignant cells using antibody-coated silica@Au nanoshells, hollow Au/Ag nanospheres and Au nanorods. Nanotechnology. 2009;20:425104.

    Article  PubMed  CAS  Google Scholar 

  129. Thevenot P, Cho J, Wavhal D, Timmons RB, Tang L. Surface chemistry influences cancer killing effect of TiO2 nanoparticles. Nanomedicine. 2008;4:226–36.

    CAS  PubMed  Google Scholar 

  130. Farrer NJ, Salassa L, Sadler PJ. Photoactivated chemotherapy (PACT): the potential of excited-state d-block metals in medicine. Dalton Trans. 2009; 10690–701.

  131. Juban EA, Smeigh AL, Monat JE, McCusker JK. Ultrafast dynamics of ligand-field excited states. Coord Chem Rev. 2006;250:1783–91.

    Article  CAS  Google Scholar 

  132. Loganathan D, Morrison H. ‘Photocisplatin’ reagents. Curr Opin Drug Discov Dev. 2005;8:478–86.

    CAS  Google Scholar 

  133. Moore CM, Pendse D, Emberton M. Photodynamic therapy for prostate cancer—a review of current status and future promise. Nat Clin Pract Urol. 2009;6:18–30.

    Article  CAS  PubMed  Google Scholar 

  134. Paradies J, Crudass J, MacKay F, Yellowlees LJ, Montgomery J, Parsons S, et al. Photogeneration of titanium(III) from titanium(IV) citrate in aqueous solution. J Inorg Biochem. 2006;100:1260–4.

    Article  CAS  PubMed  Google Scholar 

  135. Sam M, Hwang JH, Chanfreau G, Abu-Omar MM. Hydroxyl radical is the active species in photochemical DNA strand scission by bis(peroxo)vanadium(V) phenanthroline. Inorg Chem. 2004;43:8447–55.

    Article  CAS  PubMed  Google Scholar 

  136. Billadeau MA, Morrison H. Photoaquation of cis-dichlorobis-(1, 10-phenanthroline)chromium(III) and the photochemical and thermal reactions of this complex with native calf- thymus DNA. J Inorg Biochem. 2005;57:249–70.

    Article  Google Scholar 

  137. Banfi S, Cassani E, Caruso E, Cazzaro M. Oxidative cleavage of plasmid bluescript by water-soluble Mn-porphyrins and artificial oxidants or molecular oxygen. Bioorg Med Chem. 2003;11:3595–605.

    Article  CAS  PubMed  Google Scholar 

  138. Niesel J, Pinto A, Peindy N’Dongo HW, Merz K, Ott I, Gust R, et al. Photoinduced CO release, cellular uptake and cytotoxicity of a tris(pyrazolyl)methane (tpm) manganese tricarbonyl complex. Chem Commun. 2008;15:1798–800.

    Article  CAS  Google Scholar 

  139. Maurer TD, Kraft BJ, Lato SM, Ellington AD, Zaleski JM. Photoactivated DNA cleavage via charge transfer promoted N2 release from tris[3-hydroxy-1,2,3-benzotriazine-4(3H)-one]iron(III). Chem Comm. 2000; 69–70.

  140. Magennis SW, Habtemariam A, Novakova O, Henry JB, Meier S, Parsons S, et al. Dual triggering of DNA binding and fluorescence via photoactivation of a dinuclear ruthenium(II) arene complex. Inorg Chem. 2007;46:5059–68.

    Article  CAS  PubMed  Google Scholar 

  141. Blower PJ, Dilworth JR, Maurer RI, Mullen GD, Reynolds CA, Zheng Y. Towards new transition metal-based hypoxic selective agents for therapy and imaging. J Inorg Biochem. 2001;85:15–22.

    Article  CAS  PubMed  Google Scholar 

  142. Failes TW, Cullinane C, Diakos CI, Yamamoto N, Lyons JG, Hambley TW. Studies of a cobalt(III) complex of the MMP inhibitor marimastat: a potential hypoxia-activated prodrug. Chemistry. 2007;13:2974–82.

    Article  CAS  PubMed  Google Scholar 

  143. Mitchell JB, Wink DA, DeGraff W, Gamson J, Keefer LK, Krishna MC. Hypoxic mammalian cell radiosensitization by nitric oxide. Cancer Res. 1993;53:5845–8.

    CAS  PubMed  Google Scholar 

  144. Boyd S, Ghiggino KP, McFadyen WD. Photochemistry of anthracene-appended cobalt(III) cyclam complexes. Aust J Chem. 2008;61:585–91.

    Article  CAS  Google Scholar 

  145. Funston AM, Cullinane C, Ghiggino KP, McFadyen WD, Stylli SS, Tregloan PA. Dipyridophenazine complexes of cobalt(III): DNA photocleavage and photobiology. Aust J Chem. 2005;58:206–12.

    Article  CAS  Google Scholar 

  146. Zeglis BM, Barton JK. DNA base mismatch detection with bulky rhodium intercalators: Synthesis and applications. Nat Protoc. 2007;2:357–71.

    Article  CAS  PubMed  Google Scholar 

  147. Prabhakara MC, Naik HSB. Mixed ligand Ni(II) complexes: DNA binding, oxidative and photo-cleavage studies. Main Group Chem. 2008;7:97–107.

    Article  CAS  Google Scholar 

  148. Bednarski PJ, Mackay FS, Sadler PJ. Photoactivatable platinum complexes. Anticancer Agents Med Chem. 2007;7:75–93.

    Article  CAS  PubMed  Google Scholar 

  149. MacKay FS, Farrer NJ, Salassa L, Tai HC, Deeth RJ, Moggach SA, et al. Synthesis, characterisation and photochemistry of PtIV pyridyl azido acetato complexes. Dalton Trans. 2009; 2315–25.

  150. Weersink RA, Bogaards A, Gertner M, Davidson SRH, Zhang K, Netchev G, et al. Techniques for delivery and monitoring of TOOKAD (WST09)-mediated photodynamic therapy of the prostate: Clinical experience and practicalities. J Photochem Photobiol B. 2005;79:211–22.

    Article  CAS  PubMed  Google Scholar 

  151. Lahiri D, Bhowmick T, Pathak B, Shameema O, Patra AK, Ramakumar S, et al. Anaerobic photocleavage of DNA in red light by dicopper(ll) complexes of 3, 3′-dithiodipropionic acid. Inorga Chem. 2009;48:339–49.

    Article  CAS  Google Scholar 

  152. Rzigalinski BA, Strobl BA. Cadmium-containing nanoparticles: perspectives on pharmacology and toxicology of quantum dots. Toxicol Appl Pharmacol. 2009;238:280–8.

    Article  CAS  PubMed  Google Scholar 

  153. Anas A, Akita H, Harashima H, Itoh T, Ishikawa M, Biju V. Photosensitized breakage and damage of DNA by CdSe-ZnS quantum dots. J Phys Chem B. 2008;112:10005–11.

    Article  CAS  PubMed  Google Scholar 

  154. Juzenas P, Chen W, Sun YP, Coelho MAN, Generalov R, Generalova N, et al. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv Drug Deliv Rev. 2008;60:1600–14.

    Article  CAS  PubMed  Google Scholar 

  155. Juzenas P, Generalov R, Juzeniene A, Moan J. Generation of nitrogen oxide and oxygen radicals by quantum dots. J Biomed Nanotechnol. 2008;4:450–6.

    Article  CAS  Google Scholar 

  156. Andrews GA, Root SW, Kerman HD, Bigelow RR. Intracavitary colloidal radiogold in the treatment of effusions caused by malignant neoplasms. Ann Surg. 1953;137:375–81.

    Article  CAS  PubMed  Google Scholar 

  157. Wheeler HB, Jaques WE, Botsford TW. Experiences with the use of radioactive colloidal gold in the treatment of cancer. Ann Surg. 1955;141:208–17.

    Article  CAS  PubMed  Google Scholar 

  158. Buchsbaum HJ, Keettel WC. Radioisotopes in treatment of stage 1a ovarian cancer. Natl Cancer Inst Monogr. 1975;42:127–8.

    CAS  PubMed  Google Scholar 

  159. Rogoff EE, Romano R, Hahn EW. The prevention of Ehrlich ascites tumor using intraperitoneal colloidal. Dose vs. size of inoculum. Radiology. 1975;114:225–6.

    CAS  PubMed  Google Scholar 

  160. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM. Gold nanoparticles: a new X-ray contrast agent. Br J Radiol. 2006;79:248–53.

    Article  CAS  PubMed  Google Scholar 

  161. Chanda N, Kan P, Watkinson LD, Shukla R, Zambre A, Carmack TL, et al. Radioactive gold nanoparticles in cancer therapy: therapeutic efficacy studies of GA-(198)AuNP nanoconstruct in prostate tumor-bearing mice. Nanomedicine. 2010;6:201–9.

    CAS  PubMed  Google Scholar 

  162. Diagaradjane P, Shetty A, Wang JC, Elliott AM, Schwartz J, Shentu S, et al. Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy. Nano Lett. 2008;8:1492–500.

    Article  CAS  PubMed  Google Scholar 

  163. Porcel E, Liehn S, Remita H, Usami N, Kobayashi K, Furusawa Y, et al. Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology. 2010;21:85–103.

    Article  PubMed  CAS  Google Scholar 

  164. Kobayashi K, Usami N, Sasaki I, Frohlich H, Le Sech C. Study of Auger effect in DNA when bound to molecules containing platinum. A possible application to hadrontherapy. Nucl Instr Meth Phys Res B Beam Interact Mater Atoms. 2003;199:348–55.

    Article  CAS  Google Scholar 

  165. Meng-Ya C, Ai-Li S, Yu-Hung C, Chih-Jui C, Helen HWC, Chao-Liang W. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice. Cancer Sci. 2008;99:1479–84.

    Article  CAS  Google Scholar 

  166. Oleinick NL, Morris RL, Belichenko I. The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci. 2002;1:1–21.

    Article  CAS  PubMed  Google Scholar 

  167. Zhang P, Rogelj S, Nguyen K, Wheeler D. Design of a highly sensitive and specific nucleotide sensor based on photon upconverting particles. J Am Chem Soc. 2006;128:12410–1.

    Article  CAS  PubMed  Google Scholar 

  168. Kramer KW, Biner D, Frei G, del Gu HU, Hehlen MP, Luthi SR. Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem Mater. 2004;16:1244–51.

    Article  CAS  Google Scholar 

  169. Roy I, Ohulchanskyy TY, Pudavar HE, Bergey EJ, Oseroff AR, Morgan J, et al. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J Am Chem Soc. 2003;125:7860–5.

    Article  CAS  PubMed  Google Scholar 

  170. Bechet D, Couleaud P, Frochot C, Viriot ML, Guillemin F, Barberi-Heyob M. Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol. 2008;26:612–21.

    Article  CAS  PubMed  Google Scholar 

  171. Wang X, Liu F, Andavan GTS, Jing X, Singh K, Yazdanpanah VR, et al. Carbon nanotube-DNA nanoarchitectures and electronic functionality. Small. 2006;2:1356–65.

    Article  CAS  PubMed  Google Scholar 

  172. Chen W, Zhang J. Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. J Nanosci Nanotechnol. 2006;6:1159–66.

    Article  CAS  PubMed  Google Scholar 

  173. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84.

    Article  CAS  PubMed  Google Scholar 

  174. Yin JJ, Lao F, Meng J, Fu PP, Zhao Y, Xing G, et al. Inhibition of tumor growth by endohedral metallofullerenol nanoparticles optimized as reactive oxygen species scavenger. Mol Pharmacol. 2008;74:1132–40.

    Article  CAS  PubMed  Google Scholar 

  175. Colon J, Herrera L, Smith J, Patil S, Komanski C, Kupelian P, et al. Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. Nanomedicine. 2009;5:225–31.

    CAS  PubMed  Google Scholar 

  176. Tarnuzzer RW, Colon J, Patil S, Seal S. Vacancy Engineered Ceria Nanostructures for Protection from Radiation-Induced Cellular Damage. Nano Lett. 5: 2573–77.

  177. Korsvik C, Patil S, Seal S, Self WT. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun (Camb). 2007; 1056–58.

  178. Silver S, Phung LT, Silver G. Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol. 2006;33:627–34.

    Article  CAS  PubMed  Google Scholar 

  179. Wadhera A, Fung M. Systemic argyria associated with ingestion of colloidal silver. Dermatology online journal. Dermatology. 2005;11:12.

    Google Scholar 

  180. Klasen HJ. Historical review of the use of silver in the treatment of burns. I. Early uses. Burns. 2000;26:117–30.

    Article  CAS  PubMed  Google Scholar 

  181. Atiyeh BS, Costagliola M, Hayek SN, Dibo SA. Effect of silver on burn wound infection control and healing: Review of the literature. Burns. 2007;33:139–48.

    Article  PubMed  Google Scholar 

  182. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, et al. Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnol. 2005; 3–6.

  183. Hall MD, Mellor HR, Callaghan R, Hambley TW. Basis for design and development of platinum(IV) anticancer complexes. J Med Chem. 2007;50:3403–11.

    Article  CAS  PubMed  Google Scholar 

  184. Gao J, Liang G, Zhang B, Kuang Y, Zhang X, Xu B. FePt yolk-shell nanocrystals as a potent agent to kill HeLa cells. J Am Chem Soc. 2007;129:1428–33.

    Article  CAS  PubMed  Google Scholar 

  185. Xu C, Yuan Z, Kohler N, Kim J, Chung MA, Sun S. FePt yonanoparticles as an Fe reservoir for controlled Fe release and tumor inhibition. J Am Chem Soc. 2009;131:15346–51.

    Article  CAS  PubMed  Google Scholar 

  186. Xu C, Wang B, Sun S. Dumbbell-like Au-Fe3O4 nanoparticles for target-specific platin delivery. J Am Chem Soc. 2009;131:4216–7.

    Article  CAS  PubMed  Google Scholar 

  187. Xu ZP, Zeng QH, Lu GQ, Yu AB. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci. 2006;61:1027–40.

    Article  CAS  Google Scholar 

  188. Widder KJ, Morris RM, Poore GA. Selective targeting of magnetic albumin microspheres containing low-doses doxorubicin: total remission in Yoshida sarcoma-bearing rats. Eur J Cancer Clin Oncol. 1983;19:135–9.

    Article  CAS  PubMed  Google Scholar 

  189. Zhu SG, Xiang JJ, Li XL, Shen SR, Lu HB, Zhou J, et al. Poly(L-lysine)-modified silica nanoparticles for the delivery of antisense oligonucleotides. Biotechnol Appl Biochem. 2004;39:179–87.

    Article  CAS  PubMed  Google Scholar 

  190. Bisht S, Bhakta G, Mitra S, Maitra A. pDNA loaded calcium phosphate nanoparticles: highly efficient non-viral vector for gene delivery. Int J Pharm. 2005;288:157–68.

    Article  CAS  PubMed  Google Scholar 

  191. Chowdhury EH, Kunou M, Nagaoka M, Kundu AK, Hoshiba T, Akaike T. High-efficiency gene delivery for expression in mammalian cells by nanoprecipitates of Ca-Mg phosphate. Gene. 2004;341:77–82.

    Article  CAS  PubMed  Google Scholar 

  192. Alivisatos AP, Gu W, Larabell C. Quantum dots as cellular probes. Annu Rev Biomed Eng. 2005;7:55–76.

    Article  CAS  PubMed  Google Scholar 

  193. Oyewumi MO, Yokel RA, Jay M, Coakley T, Mumper RJ. Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice. J Control Release. 2004;95:613–26.

    Article  CAS  PubMed  Google Scholar 

  194. Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol. 2007;2:469–78.

    Article  CAS  PubMed  Google Scholar 

  195. AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009;3:279–90.

    Article  CAS  PubMed  Google Scholar 

  196. Choi SJ, Oh JM, Choy JH. Toxicological effects of inorganic nanoparticles on human lung cancer A549 cells. J Inorg Biochem. 2009;103:463–71.

    Article  CAS  PubMed  Google Scholar 

  197. Kim JS, Yoon TJ, Yu KN, Kim BG, Park SJ, Kim HW, et al. Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci. 2006;89:338–47.

    Article  CAS  PubMed  Google Scholar 

  198. Jeng HA, Swanson J. Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health Part A Toxic Hazard Substance Environ Eng. 2006;41:2699–711.

    Article  CAS  Google Scholar 

  199. Gajdosikova A, Gajdosik A, Koneracka M, Zavisova V, Stvrtina S, Krchnarova V, et al. Acute toxicity of magnetic nanoparticles in mice. Neuro Endocrinol Lett. 2006;27:96–9.

    CAS  PubMed  Google Scholar 

  200. Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm. 2008;5:316–27.

    Article  CAS  PubMed  Google Scholar 

  201. Lacava LM, Garcia VAP, Kuckelhaus S, Azevedo RB, Sadeghiani N, Buske N, et al. Long-term retention of dextran-coated magnetite nanoparticles in the liver and spleen. J Magn Magn Mater. 2004;272–276:2434–5.

    Article  CAS  Google Scholar 

  202. Yu Z, Xiaoliang W, Xuman W, Hong X, Hongchen G. Acute toxicity and irritation of water-based dextran-coated magnetic fluid injected in mice. J Biomed Mater Res. 2008;85:582–7.

    Article  CAS  Google Scholar 

  203. Heppner GH. Tumor heterogeneity. Cancer Res. 1984;44:2259–65.

    CAS  PubMed  Google Scholar 

  204. Jain RK. Transport of molecules, particles, and cells in solid tumors. Annu Rev Biomed Eng. 1999;1:241–63.

    Article  CAS  PubMed  Google Scholar 

  205. Jain RK, Padera TP. Development. Lymphatics make the break. Science. 2003;299:209–10.

    Article  CAS  PubMed  Google Scholar 

  206. Koo OM, Rubinstein I, Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine. 2005;1:193–212.

    CAS  PubMed  Google Scholar 

  207. Bhattacharyya S, Bhattacharya R, Curley S, McNiven MA, Mukherjee P. Nanoconjugation modulates the trafficking and mechanism of antibody induced receptor endocytosis. Proc Natl Acad Sci USA. 2010;107:14541–6.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was partly supported by NIH CA135011 and CA136494 grants to PM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyabrata Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharyya, S., Kudgus, R.A., Bhattacharya, R. et al. Inorganic Nanoparticles in Cancer Therapy. Pharm Res 28, 237–259 (2011). https://doi.org/10.1007/s11095-010-0318-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0318-0

KEY WORDS

Navigation