Skip to main content

Advertisement

Log in

Octreotide-Modified Polymeric Micelles as Potential Carriers for Targeted Docetaxel Delivery to Somatostatin Receptor Overexpressing Tumor Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Somatostatin analogue octreotide (OCT)-modified PEG-b-PLA micelles were constructed to bind to somatostatin receptors (SSTRs) overexpressed on tumor cells for enhanced intracellular drug delivery and improved therapeutic efficacy for malignant tumors.

Methods

Copolymers conjugated with octreotide (OCT-PEG6000-b-PLA5000) were synthesized. The fluorescent probe DiI or docetaxel (DTX)-loaded micelles with or without octreotide modification (OCT-PM-DiI, PM-DiI, OCT-PM-DTX and PM-DTX) were prepared, and their physiochemical properties, intracellular delivery in vitro or anti-tumor activity in vivo were evaluated, respectively.

Results

The CMC of OCT-PEG6000-b-PLA5000 was quite low (<10−6 mol/L). All micelles were less than 80 nm with spherical shape and high encapsulation efficiency. DTX molecules were well dispersed in the micelles without chemical interactions with the polymers. Flow cytometry and confocal microscopy results showed that OCT-PM-DiI enhanced intracellular delivery efficiency via receptor-mediated endocytosis in NCI-H446 cells; the optimal modification ratio of OCT on micelle surface was 5%. OCT-PM-DTX exhibited higher retardation of tumor growth after intravenous injections into xenograft NCI-H446 tumor model; octreotide-modified micelles did not show severe toxicity.

Conclusions

SSTRs targeting micelles may serve as promising nanocarriers in tumor treatment for hydrophobic anticancer drugs, such as DTX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Engels FK, Mathot RA, Verweij J. Alternative drug formulations of docetaxel: a review. Anticancer Drugs. 2007;18:95–103.

    Article  PubMed  CAS  Google Scholar 

  2. Baker J, Ajani J, Scotte F, Winther D, Martin M, Aapro MS, et al. Docetaxel-related side effects and their management. Eur J Oncol Nurs. 2009;13:49–59.

    Article  PubMed  Google Scholar 

  3. Liu B, Yang M, Li R, Ding Y, Qian X, Yu L, et al. The antitumor effect of novel docetaxel-loaded thermosensitive micelles. Eur J Pharm Biopharm. 2008;69:527–34.

    Article  PubMed  CAS  Google Scholar 

  4. Han X, Liu J, Liu M, Xie C, Zhan C, Gu B, et al. 9-NC-loaded folate-conjugated polymer micelles as tumor targeted drug delivery system: preparation and evaluation in vitro. Int J Pharm. 2009;372:125–31.

    Article  PubMed  CAS  Google Scholar 

  5. Shao K, Huang R, Li J, Han L, Ye L, J. Lou, et al. Angiopep-2 modified PE-PEG based polymeric micelles for amphotericin B delivery targeted to the brain. J Control Release. 2010; 147: 118-26.

    Google Scholar 

  6. Xiong XB, Uludag H. A. Lavasanifar. Virus-mimetic polymeric micelles for targeted siRNA delivery. Biomaterials. 2010; 31: 5886-93.

  7. Torchilin VP. Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci. 2004;61:2549–59.

    Article  PubMed  CAS  Google Scholar 

  8. Kwon GS. Polymeric micelles for delivery of poorly water-soluble compounds. Crit Rev Ther Drug Carrier Syst. 2003;20:357–403.

    Article  PubMed  CAS  Google Scholar 

  9. Lin WJ, Chen YC, Lin CC, Chen CF, Chen JW. Characterization of pegylated copolymeric micelles and in vivo pharmacokinetics and biodistribution studies. J Biomed Mater Res B Appl Biomater. 2006;77:188–94.

    PubMed  Google Scholar 

  10. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul. 2001;41:189–207.

    Article  PubMed  CAS  Google Scholar 

  11. Ishihara T, Kubota T, Choi T, Takahashi M, Ayano E, Kanazawa H, et al. Polymeric nanoparticles encapsulating betamethasone phosphate with different release profiles and stealthiness. Int J Pharm. 2009;375:148–54.

    Article  PubMed  CAS  Google Scholar 

  12. Liu J, Zeng F, Allen C. Influence of serum protein on polycarbonate-based copolymer micelles as a delivery system for a hydrophobic anti-cancer agent. J Control Release. 2005;103:481–97.

    Article  PubMed  CAS  Google Scholar 

  13. Patel YC. Somatostatin and its receptor family. Front Neuroendocrinol. 1999;20:157–98.

    Article  PubMed  CAS  Google Scholar 

  14. Virgolini I, Traub T, Novotny C, Leimer M, Fuger B, Li SR, et al. Experience with indium-111 and yttrium-90-labeled somatostatin analogs. Curr Pharm Des. 2002;8:1781–807.

    Article  PubMed  CAS  Google Scholar 

  15. Weinerand RE, Thakur ML. Radiolabeled peptides in oncology: role in diagnosis and treatment. BioDrugs. 2005;19:145–63.

    Article  Google Scholar 

  16. Appetecchiaand M, Baldelli R. Somatostatin analogues in the treatment of gastroenteropancreatic neuroendocrine tumours, current aspects and new perspectives. J Exp Clin Cancer Res. 29:19.

  17. Kaltsas GA, Papadogias D, Makras P, Grossman AB. Treatment of advanced neuroendocrine tumours with radiolabelled somatostatin analogues. Endocr Relat Cancer. 2005;12:683–99.

    Article  PubMed  CAS  Google Scholar 

  18. Sharmaand K, Srikant CB. Induction of wild-type p53, Bax, and acidic endonuclease during somatostatin-signaled apoptosis in MCF-7 human breast cancer cells. Int J Cancer. 1998;76:259–66.

    Article  Google Scholar 

  19. Reynaert H, Rombouts K, Vandermonde A, Urbain D, Kumar U, Bioulac-Sage P, et al. Expression of somatostatin receptors in normal and cirrhotic human liver and in hepatocellular carcinoma. Gut. 2004;53:1180–9.

    Article  PubMed  CAS  Google Scholar 

  20. Reubi JC. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev. 2003;24:389–427.

    Article  PubMed  CAS  Google Scholar 

  21. Huang CM, Wu YT, Chen ST. Targeting delivery of paclitaxel into tumor cells via somatostatin receptor endocytosis. Chem Biol. 2000;7:453–61.

    Article  PubMed  CAS  Google Scholar 

  22. Watt HL, Kharmate G, Kumar U. Biology of somatostatin in breast cancer. Mol Cell Endocrinol. 2008;286:251–61.

    Article  PubMed  CAS  Google Scholar 

  23. Dasgupta P. Somatostatin analogues: multiple roles in cellular proliferation, neoplasia, and angiogenesis. Pharmacol Ther. 2004;102:61–85.

    Article  PubMed  CAS  Google Scholar 

  24. Xiong XB, Huang Y, Lu WL, Zhang X, Zhang H, Nagai T, et al. Enhanced intracellular delivery and improved antitumor efficacy of doxorubicin by sterically stabilized liposomes modified with a synthetic RGD mimetic. J Control Release. 2005;107:262–75.

    Article  PubMed  CAS  Google Scholar 

  25. Erchegyi J, Kastin AJ, Zadina JE. Isolation of a novel tetrapeptide with opiate and antiopiate activity from human brain cortex: Tyr-Pro-Trp-Gly-NH2 (Tyr-W-MIF-1). Peptides. 1992;13:623–31.

    Article  PubMed  CAS  Google Scholar 

  26. Beghein N, Rouxhet L, Dinguizli M, Brewster ME, Arien A, Preat V, et al. Characterization of self-assembling copolymers in aqueous solutions using Electron Paramagnetic Resonance and Fluorescence spectroscopy. J Control Release. 2007;117:196–203.

    Article  PubMed  CAS  Google Scholar 

  27. Elsabahy M, Perron ME, Bertrand N, Yu GE, Leroux JC. Solubilization of docetaxel in poly(ethylene oxide)-block-poly(butylene/styrene oxide) micelles. Biomacromolecules. 2007;8:2250–7.

    Article  PubMed  CAS  Google Scholar 

  28. Yang M, Ding Y, Zhang L, Qian X, Jiang X, Liu B. Novel thermosensitive polymeric micelles for docetaxel delivery. J Biomed Mater Res A. 2007;81:847–57.

    PubMed  Google Scholar 

  29. Xiong XB, Mahmud A, Uludag H, Lavasanifar A. Conjugation of arginine-glycine-aspartic acid peptides to poly(ethylene oxide)-b-poly(epsilon-caprolactone) micelles for enhanced intracellular drug delivery to metastatic tumor cells. Biomacromolecules. 2007;8:874–84.

    Article  PubMed  CAS  Google Scholar 

  30. Zeng F, Lee H, Allen C. Epidermal growth factor-conjugated poly(ethylene glycol)-block- poly(delta-valerolactone) copolymer micelles for targeted delivery of chemotherapeutics. Bioconjug Chem. 2006;17:399–409.

    Article  PubMed  CAS  Google Scholar 

  31. Sezgin Z, Yuksel N, Baykara T. Preparation and characterization of polymeric micelles for solubilization of poorly soluble anticancer drugs. Eur J Pharm Biopharm. 2006;64:261–8.

    Article  PubMed  CAS  Google Scholar 

  32. Gu JC, Qiao MX, Gao W, Zhao XL, Hu HY, Xu J, et al. Preparation of adriamycin-loaded temperature/pH sensitive self-assembly block copolymer micelles. Yao Xue Xue Bao. 2009;44:793–7.

    PubMed  CAS  Google Scholar 

  33. Cairo CW, Gestwicki JE, Kanai M, Kiessling LL. Control of multivalent interactions by binding epitope density. J Am Chem Soc. 2002;124:1615–9.

    Article  PubMed  CAS  Google Scholar 

  34. Jule E, Nagasaki Y, Kataoka K. Lactose-installed poly(ethylene glycol)-poly(d, l-lactide) block copolymer micelles exhibit fast-rate binding and high affinity toward a protein bed simulating a cell surface. A surface plasmon resonance study. Bioconjug Chem. 2003;14:177–86.

    Article  PubMed  CAS  Google Scholar 

  35. Hwang HY, Kim IS, Kwon IC, Kim YH. Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles. J Control Release. 2008; 128: 23-31.

    Google Scholar 

  36. Taxotere® Prescribing Information. Bridgewater, NJ: sanofi-aventis U.S. LLC; Rev. December 2006.

Download references

ACKNOWLEDGMENTS

This study was supported by projects from Ministry of Science and Technology, PR China (No. 2009CB930300, No. 2007AA021811, No. 2009ZX09310-001). We thank Dr. Jinfeng Du for his help in preparing the graphs of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Zhang or Qiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Wang, X., Wang, J. et al. Octreotide-Modified Polymeric Micelles as Potential Carriers for Targeted Docetaxel Delivery to Somatostatin Receptor Overexpressing Tumor Cells. Pharm Res 28, 1167–1178 (2011). https://doi.org/10.1007/s11095-011-0381-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0381-1

KEY WORDS

Navigation