Skip to main content

Advertisement

Log in

Fatty Acid–RGD Peptide Amphiphile Micelles as Potential Paclitaxel Delivery Carriers to αvβ3Integrin Overexpressing Tumors

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To design and synthesize fatty acid-RGD peptide amphiphiles with ADA linker for their potential delivery of hydrophobic drugs like paclitaxel targeted to αvβ3 integrin overexpressing tumors.

Methods

Four amphiphiles - C16 or C18 fatty acid–RGD peptide and ADA linker were designed and synthesized. CMC, size and zeta potential of the amphiphiles were determined. FITC loaded micelles uptake into A2058 melanoma cells was investigated at 4°C and 37°C using confocal microscopy. Paclitaxel was loaded into micelles, their encapsulation efficiency and cytotoxicity of micelles was evaluated. The stability of the micelles was determined using FRET method.

Results

Mass, 1H NMR and HPLC analysis confirmed the formation of amphiphiles and their purity. Among the amphiphiles, C18-(ADA)2-RGD amphiphile exhibited lowest CMC (9.00 ± 1.73 μM) and its micelles had suitable size (194.63 ± 44.86 nm) and zeta potential (0.27 ± 1.96 mV) for targeting. The cellular uptake of the micelles was temperature dependent and the micelles were stable. The IC50 of paclitaxel loaded in micelles decreased 50% in αvβ3 integrin overexpressing cells and showed a 4 fold increase in normal cells when compared to free paclitaxel.

Conclusion

Amphiphiles of fatty acids–ADA-RGD were synthesized. These amphiphiles formed stable micelles and were effective as targeted delivery carriers to αvβ3 integrin overexpressing tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

REFERENCES

  1. Shimada T, Lee S, Bates FS, Hotta A, Tirrel M. Wormlike micelle formation in peptide-lipid conjugates driven by secondary structure transformation of the headgroups. J Phys Chem B. 2009;113(42):13711–4.

    Article  PubMed  CAS  Google Scholar 

  2. Rexeisen EL, Fan W, Pangburn TO, Taribagil RR, Bates FS, Lodge TP, et al. Self-assembly of fibronectin mimetic peptide-amphiphile nanofibers. Langmuir. 2010;26(3):1953–9.

    Article  PubMed  CAS  Google Scholar 

  3. Pashuck ET, Stupp SI. Direct observation of morphological transformation from twisted ribbons into helical ribbons. J Am Chem Soc. 2010;132(26):8819–21.

    Article  PubMed  CAS  Google Scholar 

  4. Ziserman L, Lee HY, Raghavan SR, Mor A, Danino D. Unraveling the mechanism of nanotube formation by chiral self-assembly of amphiphiles. J Am Chem Soc. 2011;133(8):2511–7.

    Article  PubMed  CAS  Google Scholar 

  5. Cui H, Muraoka T, Cheetham AG, Stupp SI. Self-assembly of giant peptide nanobelts. Nano Lett. 2009;9(3):945–51.

    Article  PubMed  CAS  Google Scholar 

  6. Niece KL, Hartgerink JD, Donners JJJM, Stupp SI. Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction. J Am Chem Soc. 2003;125(24):7146–7.

    Article  PubMed  CAS  Google Scholar 

  7. Han S, Cao S, Wang Y, Wang J, Xia D, Xu H, et al. Self-Assembly of short peptide amphiphiles: the cooperative effect of hydrophobic interaction and hydrogen bonding. Chem Eur J. 2011;17(46):13095–102.

    Article  PubMed  CAS  Google Scholar 

  8. Xu XD, Jin Y, Liu Y, Zhang XZ, Zhuo RX. Self-assembly behavior of peptide amphiphiles (PAs) with different length of hydrophobic alkyl tails. Colloids Surf B Biointerfaces. 2010;81(1):329–35.

    Article  PubMed  CAS  Google Scholar 

  9. Webber MJ, Tongers J, Renault MA, Roncalli JG, Losordo DW, Stupp SI. Development of bioactive peptide amphiphiles for therapeutic cell delivery. Acta Biomater. 2010;6(1):3–11.

    Article  PubMed  CAS  Google Scholar 

  10. Angeloni NL, Bond CW, Tang Y, Harrington DA, Zhang S, Stupp SI, et al. Regeneration of the cavernous nerve by sonic hedgehog using aligned peptide amphiphile nanofibers. Biomaterials. 2011;32(4):1091–101.

    Article  PubMed  CAS  Google Scholar 

  11. Chow LW, Wang LJ, Kaufman DB, Stupp SI. Self-assembling nanostructures to deliver angiogenic factors to pancreatic islets. Biomaterials. 2010;31(24):6154–61.

    Article  PubMed  CAS  Google Scholar 

  12. Bulut S, Erkal TS, Toksoz S, Tekinay AB, Tekinay T, Guler MO. Slow release and delivery of antisense oligonucleotide drug by self-assembled peptide amphiphile nanofibers. Biomacromolecules. 2011;12(8):3007–14.

    Article  PubMed  CAS  Google Scholar 

  13. Wiradharma N, Tong YW, Yang YY. Self-assembled oligopeptide nanostructures for co-delivery of drug and gene with synergistic therapeutic effect. Biomaterials. 2009;30(17):3100–9.

    Article  PubMed  CAS  Google Scholar 

  14. Guler MO, Claussen RC, Stupp SI. Encapsulation of pyrene within self-assembled peptide amphiphile nanofibers. J Mater Chem. 2005;15(42):4507–12.

    Article  CAS  Google Scholar 

  15. Chen JX, Wang HY, Li C, Han K, Zhang XZ, Zhuo RX. Construction of surfactant-like tetra-tail amphiphilic peptide with RGD ligand for encapsulation of porphyrin for photodynamic therapy. Biomaterials. 2011;32(6):1678–84.

    Article  PubMed  CAS  Google Scholar 

  16. Accardo A, Tesauro D, Mangiapia G, Pedone C, Morelli G. Nanostructures by self-assembling peptide amphiphile as potential selective drug carriers. Biopol Pep Sci. 2007;88(2):115–21.

    Article  CAS  Google Scholar 

  17. Plow EF, Haas TA, Zhang L, Loftus J, Smith JW. Ligand binding to integrins. J Biol Chem. 2000;275(29):21785–8.

    Article  PubMed  CAS  Google Scholar 

  18. Desgrosellier JS, Barnes LA, Shields DJ, Huang M, Lau SK, Prévost N, et al. An integrin alpha(v)beta(3)-c-Src oncogenic unit promotes anchorage-independence and tumor progression. Nat Med. 2009;15(10):1163–9.

    Article  PubMed  CAS  Google Scholar 

  19. Cox D, Brennan M, Moran N. Integrins as therapeutic targets: lessons and opportunities. Nat Rev Drug Discov. 2010;9(10):804–20.

    Article  PubMed  CAS  Google Scholar 

  20. Hölig P, Bach M, Völkel T, Nahde T, Hoffmann S, Müller R, et al. Novel RGD lipopeptides for the targeting of liposomes to integrin-expressing endothelial and melanoma cells. Protein Eng Des Sel. 2004;17(5):433–41.

    Article  PubMed  Google Scholar 

  21. Shen SI, Kotamraj PR, Bhattacharya S, Li X, Jasti BR. Synthesis and characterization of RGD-fatty acid amphiphilic micelles as targeted delivery carriers for anticancer agents. J Drug Target. 2007;15(1):51–8.

    Article  PubMed  CAS  Google Scholar 

  22. Antunes P, Ginj M, Walter MA, Chen J, Reubi JC, Maecke HR. Influence of different spacers on the biological profile of a DOTA-somatostatin analogue. Bioconjug Chem. 2007;18(1):84–92.

    Article  PubMed  CAS  Google Scholar 

  23. Wasserheit C, Frazein A, Oratz R, Sorich J, Downey A, Hochster H, et al. Phase II trial of paclitaxel and cisplatin in women with advanced breast cancer: an active regimen with limiting neurotoxicity. J Clin Oncol. 1996;14(7):1993–9.

    PubMed  CAS  Google Scholar 

  24. Weiss RB, Donehower RC, Wiernik PH, Ohnuma T, Gralla RJ, Trump DL, et al. Hypersensitivity reactions from taxol. J Clin Oncol. 1990;8(7):1263–8.

    PubMed  CAS  Google Scholar 

  25. Zhan C, Gu B, Xie C, Li J, Liu Y, Lu W. Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect. J Control Release. 2010;143(1):136–42.

    Article  PubMed  CAS  Google Scholar 

  26. Hu Z, Luo F, Pan Y, Hou C, Ren L, Chen J, et al. Arg-Gly-Asp (RGD) peptide conjugated poly(lactic acid)-poly(ethylene oxide) micelle for targeted drug delivery. J Biomed Mater Res A. 2008;85(3):797–807.

    PubMed  Google Scholar 

  27. Jiang X, Sha X, Xin H, Chen L, Gao X, Wang X, et al. Self-aggregated pegylated poly (trimethylene carbonate) nanoparticles decorated with c(RGDyK) peptide for targeted paclitaxel delivery to integrin-rich tumors. Biomaterials. 2011;32(35):9457–69.

    Article  PubMed  CAS  Google Scholar 

  28. Danhier F, Vroman B, Lecouturier N, Crokart N, Pourcelle V, Freichels H, et al. Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with paclitaxel. J Control Release. 2009;140(2):166–73.

    Article  PubMed  CAS  Google Scholar 

  29. Sovadinova I, Palermo EF, Huang R, Thoma LM, Kuroda K. Mechanism of polymer-induced hemolysis: nanosized pore formation and osmotic lysis. Biomacromolecules. 2011;12(1):260–8.

    Article  PubMed  CAS  Google Scholar 

  30. Kotamraj P, Russu WA, Jasti B, Wu J, Li X. Novel integrin-targeted binding-triggered drug delivery system for methotrexate. Pharm Res. 2011;28(12):3208–19.

    Article  PubMed  CAS  Google Scholar 

  31. Tang R, Ji W, Wang C. Amphiphilic block copolymers bearing ortho ester side-chains: pH-dependent hydrolysis and self-assembly in water. Macromol Biosci. 2010;10(2):192–201.

    Article  PubMed  CAS  Google Scholar 

  32. Lee ES, Oh YT, Youn YS, Nam M, Park B, Yun J, et al. Binary mixing of micelles using Pluronics for a nano-sized drug delivery system. Colloids Surf B Biointerfaces. 2011;82(1):190–5.

    Article  PubMed  CAS  Google Scholar 

  33. Domínguez A, Fernández A, González N, Iglesias E, Montenegro L. Determination of critical micelle concentration of some surfactants by three techniques. J Chem Edu. 1997;74(10):1227–31.

    Article  Google Scholar 

  34. Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148(2):135–46.

    Article  PubMed  CAS  Google Scholar 

  35. Ding H, Yong KT, Roy I, Hu R, Wu F, Zhao L, et al. Bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles as novel tumor targeting carriers. Nanotechology. 2011;22(16):165101.

    Article  Google Scholar 

  36. Qui LY, Bae YH. Polymer architecture and drug delivery. Pharm Res. 2006;23(1):1–30.

    Article  Google Scholar 

  37. Wang Y, Wang X, Zhang Y, Yang S, Wang J, Zhang X, et al. RGD-modified polymeric micelles as potential carriers for targeted delivery to integrin-overexpressing tumor vasculature and tumor cells. J Drug Target. 2009;179(6):459–67.

    Article  Google Scholar 

  38. Chu-Kung AF, Nguyen R, Bozzelli KN, Tirrell M. Chain length dependence of antimicrobial peptide-fatty acid conjugate activity. J Colloid Interface Sci. 2010;345(2):160–7.

    Article  PubMed  CAS  Google Scholar 

  39. Koppelhus U, Shiraishi T, Zachar V, Pankratova S, Nielsen PE. Improved cellular activity of antisense peptide nucleic acids by conjugation to a cationic peptide-lipid (CatLip) domain. Bioconjug Chem. 2008;19(8):1526–34.

    Article  PubMed  CAS  Google Scholar 

  40. Bellmann-Sickert K, Elling CE, Madsen AN, Little PB, Lundgren K, Gerlach LO, et al. Long-acting lipidated analogue of human pancreatic polypeptide is slowly released into circulation. J Med Chem. 2011;54(8):2658–67.

    Article  PubMed  CAS  Google Scholar 

  41. Matsonand JB, Stupp SI. Drug release from hydrazone-containing peptide amphiphiles. Chem Commun (Camb). 2011;47(28):7962–4.

    Article  Google Scholar 

  42. Kim JK, Anderson J, Jun HW, Repka MA, Jo S. Self-assembling peptide amphiphile-based nanofiber gel for bioresponsive cisplatin delivery. Mol Pharm. 2009;6(3):978–85.

    Article  PubMed  CAS  Google Scholar 

  43. Xiong JP, Stehle T, Zhang R, Joachimiak A, Frech M, Goodman SL, et al. Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science. 2002;296(5565):151–5.

    Article  PubMed  CAS  Google Scholar 

  44. Zhang H, Schneider SE, Bray BL, Friedrich PE, Tvermoes NA, Mader CJ, et al. Process development of TRI-999, a fatty-acid modified hiv fusion inhibitory peptide. Org Process Res Dev. 2008;12(1):101–10.

    Article  Google Scholar 

  45. Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. J Pharm Sci. 2003;92(7):1343–55.

    Article  PubMed  CAS  Google Scholar 

  46. Lee ES, Na K, Bae YH. Polymeric micelle for tumor pH and folate-mediated targeting. J Control Release. 2003;91(1–2):103–13.

    Article  PubMed  CAS  Google Scholar 

  47. Zhang Y, Wang X, Wang J, Zhang X, Zhang Q. Octreotide-modified polymeric micelles as potential carriers for targeted docetaxel delivery to somatostatin receptor overexpressing tumor cells. Pharm Res. 2011;28(5):1167–78.

    Article  PubMed  CAS  Google Scholar 

  48. Kedar U, Phutane P, Shidhaye S, Kadam V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine. 2010;6(6):714–29.

    Article  PubMed  CAS  Google Scholar 

  49. Li S, Huang L. Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm. 2008;5(4):496–504.

    Article  PubMed  CAS  Google Scholar 

  50. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–15.

    Article  PubMed  CAS  Google Scholar 

  51. Castel S, Pagan R, Mitjans F, Piulats J, Goodman S, Jonczyek A, et al. RGD Peptides and monoclonal antibodies, antagonists of αvIntegrin, enter the cells by independent endocytic pathways. Lab Invest. 2001;81(12):1615–26.

    Article  PubMed  CAS  Google Scholar 

  52. Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems. J Control Release. 2001;73(2–3):137–72.

    Article  PubMed  CAS  Google Scholar 

  53. Chen H, Kim S, Li L, Wang S, Park K, Cheng JX. Release of hydrophobic molecules from polymer micelles into cell membranes revealed by förster resonance energy transfer imaging. PNAS. 2008;105(18):6596–601.

    Article  PubMed  CAS  Google Scholar 

  54. Chen H, Kim S, He W, Wang H, Low PS, Park K, et al. Fast release of lipophilic agents from circulating PEG-PDLLA micelles revealed by in vivo förster resonance energy transfer imaging. Langmuir. 2008;24(10):5213–7.

    Article  PubMed  CAS  Google Scholar 

  55. Lu J, Owen SC, Shoichet MS. Stability of self-assembled polymeric micelles in serum. Macromolecules. 2011;44(15):6002–8.

    Article  PubMed  CAS  Google Scholar 

  56. Yang C, Tan JPK, Cheng W, Attia ABE, Ting CTY, Nelson A, et al. Supramolecular nanostructures designed for high cargo loading capacity and kinetic stability. Nano Today. 2010;5(6):515–23.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaskara Jasti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1084 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Javali, N.M., Raj, A., Saraf, P. et al. Fatty Acid–RGD Peptide Amphiphile Micelles as Potential Paclitaxel Delivery Carriers to αvβ3Integrin Overexpressing Tumors. Pharm Res 29, 3347–3361 (2012). https://doi.org/10.1007/s11095-012-0830-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0830-5

KEY WORDS

Navigation