Skip to main content

Advertisement

Log in

Intestinal Uptake and Transport of Vitamin B12-loaded Soy Protein Nanoparticles

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Background

Intestinal absorption of vitamin B12 (VB12) is a major challenge in combating pernicious anemia due to intrinsic factor (IF) deficiency.

Purpose

The aim of this study was to explore the feasibility of using soy protein isolates (SPI) nanoparticles to improve the intestinal transport and absorption of VB12.

Methods

Three different sized VB12-loaded SPI nanoparticles were produced by modulating preparation conditions using a cold-gelation method. The intestinal uptake and transport mechanisms of SPI nanoparticles for VB12 delivery were investigated and related to particle size.

Results

SPI nanoparticles were not cytotoxic to Caco-2 cells and were effectively internalized into the cytoplasm via multiple endocytosis pathways including clathrin- and/or caveolae-mediated endocytosis and macropinocytosis routes. VB12 transport across the Caco-2 cell monolayers was increased to 2–3 times after nanoencapsulation, which was dependent on particle size, in the increasing order of 30 > 100 > 180 nm. Using inhibitor block method, the transport of 30 and 100 nm SPI nanoparticles appeared to be clathrin-mediated transcytosis and macropinocytosis routes. The intestinal transport of VB12, assessed using rodent jejunum in Ussing chambers, was improved up to 4-fold after being encapsulated into 30 nm SPI nanoparticles.

Conclusions

The findings suggest that SPI nanoparticles could be a promising carrier to facilitate the oral delivery of VB12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

COL :

Colchicine

COUM-6 :

Coumarin 6

CPZ :

Chlorpromazine hydrochloride

CyD :

Cytochalasin D

DAPI :

4′, 6-Diamidino-2-phenylindole

DLS :

Dynamic light scattering

DMEM :

Dulbecco’s modified eagle medium

DMSO :

Dimethyl sulfoxide

FBS :

Fetal bovine serum

FI :

Fluorescence intensity

FLI :

Flilipin III

HBSS :

Hank’s balanced salt solution buffer

HEPES :

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

IF :

Intrinsic factor

LC :

Loading capacity

LE :

Loading efficiency

PBS :

Phosphate buffered saline

PLGA :

Poly(lactic-co-glycolic) acid

PMS :

Phenazine methosulfate

SPI :

Soy protein isolates

TEER :

Transepithelial electrical resistance

VB 12 :

Vitamin B12

VD 3 :

Vitamin D3

WGA :

Wheat germ agglutinin

XTT :

2,3-bis-(2-methoxy-4-nitro-5-sulphenyl)-(2H)-tetrazolium-5-carboxanilide

References

  1. Kozyraki R, Cases O. Vitamin B12 Absorption: mammalian physiology and acquired and inherited disorders. Biochimie. 2013;95:1002–7.

    Article  CAS  PubMed  Google Scholar 

  2. Allen RH, Seetharam B, Podell E, Alpers DH. Effect of proteolytic enzymes on the binding of cobalamin to r protein and intrinsic factor: in vitro evidence that a failure to partially degrade protein is responsible for cobalamin malabsorption in pancreatic insufficiency. J Clin Investig. 1978;61(1):47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Doets EL, Szczecińska A, Dhonukshe-Rutten R, Cavelaars A, van’t Veer P, Brzozowska A, et al. Systematic review on daily vitamin B12 losses and bioavailability for deriving recommendations on vitamin B12 intake with the factorial approach. Ann Nutr Metab. 2013;62(4):311–22.

    Article  CAS  PubMed  Google Scholar 

  4. Sarti F, Iqbal J, Müller C, Shahnaz G, Rahmat D, Bernkop-Schnürch A. Poly (acrylic acid)-cysteine for oral vitamin B12 delivery. Anal Biochem. 2011;420(1):13–9.

    Article  PubMed  Google Scholar 

  5. Lin YH, Mi FL, Chen CT, Chang WC, Peng SF, Liang HF, et al. Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromolecules. 2007;8(1):146–52.

    Article  CAS  PubMed  Google Scholar 

  6. Lin YH, Chen CT, Liang HF, Kulkarni AR, Lee PW, Chen CH, et al. Novel nanoparticles for oral insulin delivery via the paracellular pathway. Nanotechnology. 2007;18(10):105102.

    Article  Google Scholar 

  7. des Rieux A, Fievez V, Garinot M, Schneider YJ, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release. 2006;116(1):1–27.

    Article  PubMed  Google Scholar 

  8. Livney YD. Milk proteins as vehicles for bioactives. Curr Opin Colloid Interface Sci. 2010;15(1):73–83.

    Article  CAS  Google Scholar 

  9. Elzoghby AO, Samy WM, Elgindy NA. Protein-based nanocarriers as promising drug and gene delivery systems. J Control Release. 2012;161(1):38–49.

    Article  CAS  PubMed  Google Scholar 

  10. Teng Z, Luo YC, Wang Q. Nanoparticles synthesized from soy protein: preparation, characterization, and application for nutraceutical encapsulation. J Agric Food Chem. 2012;60(10):2712–20.

    Article  CAS  PubMed  Google Scholar 

  11. Teng Z, Luo Y, Wang Q. Carboxymethyl chitosan-soy protein complex nanoparticles for the encapsulation and controlled release of VitaminD3. Food Chem. 2013;141(1):524–32.

    Article  CAS  PubMed  Google Scholar 

  12. Teng Z, Luo Y, Wang T, Zhang B, Wang Q. Development and application of nanoparticles synthesized with folic acid conjugated soy protein. J Agric Food Chem. 2013;61(10):2556–64.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang J, Liang L, Tian Z, Chen L, Subirade M. Preparation and in vitro evaluation of calcium-induced soy protein isolate nanoparticles and their formation mechanism study. Food Chem. 2012;133(2):390–9.

  14. Zhang J, Tian ZG, Liang L, Subirade M, Chen L. Binding interactions of β-conglycinin and glycinin with vitamin B12. J Phys Chem B. 2013;117(45):14018–28.

  15. Lee KD, Nir S, Papahadjopoulos D. Quantitative analysis of liposome-cell interactions in vitro: rate constants of binding and endocytosis with suspension and adherent J774 cells and human monocytes. Biochemistry. 1993;32(3):889–99.

    Article  CAS  PubMed  Google Scholar 

  16. Borges O, Cordeiro-da-Silva A, Romeijn SG, Amidi M, de Sousa A, Borchard G, et al. Uptake studies in rat Peyer’s patches, cytotoxicity and release studies of alginate coated chitosan nanoparticles for mucosal vaccination. J Control Release. 2006;114(3):348–58.

    Article  CAS  PubMed  Google Scholar 

  17. Han J, Wang Q, Zhang Z, Gong T, Sun X. Cationic bovine serum albumin based self-assembled nanoparticles as siRNA delivery vector for treating lung metastatic cancer. Small. 2013;10(3):524–35.

    Article  PubMed  Google Scholar 

  18. Yin Win K, Feng S-S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26(15):2713–22.

    Article  Google Scholar 

  19. Beloqui A, Solinís MÁ, Gascón AR, del Pozo-Rodríguez A, des Rieux A, Préat V. Mechanism of transport of saquinavir-loaded nanostructured lipid carriers across the intestinal barrier. J Control Release. 2013;166(2):115–23.

    Article  CAS  PubMed  Google Scholar 

  20. Déat-Lainé E, Hoffart V, Garrait G, Beyssac E. Whey protein and alginate hydrogel microparticles for insulin intestinal absorption: evaluation of permeability enhancement properties on Caco-2 cells. Int J Pharm. 2012;453(2):336–42.

    Article  Google Scholar 

  21. Hugenschmidt S, Schwenninger SM, Lacroix C. Concurrent high production of natural folate and vitamin B12 using a co-culture process with lactobacillus plantarum SM39 and propionibacterium freudenreichii DF13. Process Biochem. 2011;46(5):1063–70.

    Article  CAS  Google Scholar 

  22. Vine D, Charman S, Gibson P, Sinclair A, Porter C. Effect of dietary fatty acids on the intestinal permeability of marker drug compounds in excised rat jejunum. J Pharm Pharmacol. 2002;54(6):809–19.

    Article  CAS  PubMed  Google Scholar 

  23. Institute of Medicine. Food and Nutrition Board. Dietary reference intakes: thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. Washington, DC: National Academy Press; 1998.

    Google Scholar 

  24. Akbari B, Tavandashti MP, Zandrahimi M. Particle size characterization of nanoparticles-a practical approach. Iran J Mater Sci Eng. 2011;8(2):48–56.

    CAS  Google Scholar 

  25. Pan X, Yu S, Yao P, Shao Z. Self-assembly of β-casein and lysozyme. J Colloid Interface Sci. 2007;316(2):405–12.

    Article  CAS  PubMed  Google Scholar 

  26. Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology. 1989;96(3):736–49.

    CAS  PubMed  Google Scholar 

  27. He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31(13):3657–66.

    Article  CAS  PubMed  Google Scholar 

  28. Yin Win K, Feng SS. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26(15):2713–22.

    Article  Google Scholar 

  29. Liu Y, Wang P, Sun C, Feng N, Zhou W, Yang Y, et al. Wheat germ agglutinin-grafted lipid nanoparticles: preparation and in vitro evaluation of the association with Caco-2 monolayers. Int J Pharm. 2010;397(1):155–63.

    Article  CAS  PubMed  Google Scholar 

  30. Jiang L, Li X, Liu L, Zhang Q. Cellular uptake mechanism and intracellular fate of hydrophobically modified pullulan nanoparticles. Int J Nanomedicine. 2013;8:1825.

    PubMed Central  PubMed  Google Scholar 

  31. Catizone A, Medolago Albani L, Reola F, Alescio T. A quantitative assessment of non-specific pinocytosis by human endothelial cells surviving in vitro. Cell Mol Biol. 1993;39(2):155–69.

    CAS  PubMed  Google Scholar 

  32. Panyam J, Dali MM, Sahoo SK, Ma W, Chakravarthi SS, Amidon GL, et al. Polymer degradation and in vitro release of a model protein from poly (d, l-lactide-co-glycolide) nano-and microparticles. J Control Release. 2003;92(1):173–87.

    Article  CAS  PubMed  Google Scholar 

  33. Bajaj A, Samanta B, Yan H, Jerry J, Rotello VM. Stability, toxicity and differential cellular uptake of protein passivated-Fe3O4 nanoparticles. J Mater Chem. 2009;19(35):6328–31.

    Article  CAS  Google Scholar 

  34. Behrens I, Pena AIV, Alonso MJ, Kissel T. Comparative uptake studies of bioadhesive and non-bioadhesive nanoparticles in human intestinal cell lines and rats: the effect of mucus on particle adsorption and transport. Pharm Res. 2002;19(8):1185–93.

    Article  CAS  PubMed  Google Scholar 

  35. Lu W, Zhang Y, Tan YZ, Hu KL, Jiang XG, Fu SK. Cationic albumin-conjugated pegylated nanoparticles as novel drug carrier for brain delivery. J Control Release. 2005;107(3):428–48.

    Article  CAS  PubMed  Google Scholar 

  36. del Pozo-Rodriguez A, Pujals S, Delgado D, Solinís M, Gascón A, Giralt E, et al. A proline-rich peptide improves cell transfection of solid lipid nanoparticle-based non-viral vectors. J Control Release. 2009;133(1):52–9.

    Article  PubMed  Google Scholar 

  37. Bareford LM, Swaan PW. Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev. 2007;59(8):748–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. He CB, Hu YP, Yin LC, Tang C, Yin CH. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31(13):3657–66.

    Article  CAS  PubMed  Google Scholar 

  39. Harley VS, Dance DA, Drasar BS, Tovey G. Effects of burkholderia pseudomallei and other burkholderia species on eukaryotic cells in tissue culture. Microbios. 1997;96(384):71–93.

    Google Scholar 

  40. Luo Y, Teng Z, Wang TT, Wang Q. Cellular uptake and transport of zein nanoparticles: effects of sodium caseinate. J Agric Food Chem. 2013;61(31):7621–9.

    Article  CAS  PubMed  Google Scholar 

  41. Lin IC, Liang MT, Liu TY, Ziora ZM, Monteiro MJ, Toth I. Interaction of densely polymer-coated gold nanoparticles with epithelial Caco-2 monolayers. Biomacromolecules. 2011;12(4):1339–48.

    Article  CAS  PubMed  Google Scholar 

  42. Rieux A, Ragnarsson EG, Gullberg E, Préat V, Schneider YJ, Artursson P. Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium. Eur J Pharm Sci. 2005;25(4):455–65.

    Article  PubMed  Google Scholar 

  43. Rieux A, Ragnarsson EG, Gullberg E, Préat V, Schneider YJ, Artursson P. Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium. Eur J Pharm Sci. 2005;25(4):455–65.

    Article  PubMed  Google Scholar 

  44. Jung T, Kamm W, Breitenbach A, Kaiserling E, Xiao J, Kissel T. Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur J Pharm Biopharm. 2000;50(1):147–60.

    Article  CAS  PubMed  Google Scholar 

  45. Delie F, Rubas W. A human colonic cell line sharing similarities with enterocytes as a model to examine oral absorption: advantages and limitations of the Caco-2 model. Crit Rev Ther Drug Carrier Syst 1997;14(3)

  46. Deitch E. Nutrition and the gut mucosal barrier. Curr Opin Gen Surg. 1992:85–91

  47. Gaumet M, Gurny R, Delie F. Localization and quantification of biodegradable particles in an intestinal cell model: the influence of particle size. Eur J Pharm Sci. 2009;36(4):465–73.

    Article  CAS  PubMed  Google Scholar 

  48. Pappenheimer JR. Physiological regulation of transepithelial impedance in the intestinal mucosa of rats and hamsters. J Membr Biol. 1987;100(1):137–48.

    Article  CAS  PubMed  Google Scholar 

  49. Verma A, Uzun O, Hu Y, Hu Y, Han HS, Watson N, et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater. 2008;7(7):588–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Jiang M, Gan L, Zhu C, Dong Y, Liu J, Gan Y. Cationic core-shell liponanoparticles for ocular gene delivery. Biomaterials. 2012;33(30):7621–30.

    Article  CAS  PubMed  Google Scholar 

  51. Petchkrua W, Burns SP, Stiens SA, James JJ, Little JW. Prevalence of vitamin B12 deficiency in spinal cord injury. Arch Phys Med Rehabil. 2003;84(11):1675–9.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We are grateful to the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support and Canada Foundation for Innovation (CFI) for equipment support. Jing Zhang thanks the China Scholarship Council for providing a scholarship for her PhD program. The authors thank Mr. Jingzhou Huang for helping with Flow cytometry. The authors also thank Dr. Xuejun Sun and Ms. Geralidine Barron for their assistance with Confocal laser scan microscopy and Ms. Arlene Oatway for help with TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingyun Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Field, C.J., Vine, D. et al. Intestinal Uptake and Transport of Vitamin B12-loaded Soy Protein Nanoparticles. Pharm Res 32, 1288–1303 (2015). https://doi.org/10.1007/s11095-014-1533-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1533-x

KEY WORDS

Navigation