Photosynthetica 2005, 43(1):55-64 | DOI: 10.1007/s11099-005-5064-x

Photosynthetic performance of vegetative and reproductive structures of green hellebore (Helleborus viridis L. agg.)

G. Aschan1, H. Pfanz1, D. Vodnik2, F. Batič2
1 Applied Botany, University of Duisburg-Essen, Essen, Germany
2 Agronomy Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia

Photosynthetic irradiance response of vegetative and reproductive structures of the green-flowered deciduous perennial green hellebore was studied by the comparative use of chlorophyll (Chl) fluorescence techniques and gas exchange measurements. All the Chl-containing organs (leaves, sepals, stalks, and fruits) examined were photosynthetically active showing high intrinsic efficiencies of photosystem 2 (Fv/Fm: 0.75-0.79) after dark adaptation. Even in the smaller fertile and sterile parts of the flower (nectaries and anthers) a remarkable photosynthetic competence was detected. With increasing photon flux densities (PFD) electron transport rates, actual quantum yields, and photochemical quenching coefficients of the main photosynthetic organs decreased in the order: leaf>sepal>fruit>stalk. At moderate to high PFDs the sepals achieved maximum electron transport rates corresponding to about 80 % of concomitant mature leaves. In contrast, maximum net photosynthetic rate of the sepals [2.3 μmol(CO2) m-2 s-1] were less than one fourth of the leaves [10.6 μmol(CO2) m-2 s-1]. This difference is explained by a 70-80 % lower stomatal density of sepals in comparison to leaves. As the basal leaves emerge late during fruit development, the photosynthetically active sepals are a major source of assimilates, contributing more than 60 % of whole-plant CO2 gain in early spring. The ripening dehiscent fruits are characterized by an effective internal re-fixation of the respirational carbon loss and thus additionally improve the overall carbon budget.

Additional key words: carbon budget; chlorophyll fluorescence; CO2 re-fixation; floral photosynthesis; nectaries; sepals

Received: February 16, 2004; Accepted: September 23, 2004; Published: March 1, 2005  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Aschan, G., Pfanz, H., Vodnik, D., & Batič, F. (2005). Photosynthetic performance of vegetative and reproductive structures of green hellebore (Helleborus viridis L. agg.). Photosynthetica43(1), 55-64. doi: 10.1007/s11099-005-5064-x
Download citation

References

  1. Antlfinger, A.E., Wendel, L.F.: Reproductive effort and floral photosynthesis in Spiranthes cernua (Orchidaceae). - Amer. J. Bot. 84: 769-780, 1997. Go to original source...
  2. Aschan, G., Lösch, R.: Das Bestandesklima niederbergischer Buchenwälder. - Jahresber. naturwiss. Verein. Wuppertal 53: 89-111, 2000.
  3. Aschan, G, Pfanz, H.: Non-foliar photosynthesis - a strategy of additional carbon acquisition. - Flora 198: 81-97, 2003a. Go to original source...
  4. Aschan, G., Pfanz, H.: Non-foliar photosynthesis and its contribution to the overall carbon balance of plants. - Acta biol. sloven. 46(2): 3-10, 2003b.
  5. Bazzaz, F.A., Carlson, R.W.: Photosynthetic contribution of flowers and seeds to reproductive effort of an annual colonizer. - New Phytol. 82: 223-232, 1979. Go to original source...
  6. Bazzaz, F.A., Carlson, R.W., Harper, J.L.: Contribution to reproductive effort by photosynthesis of flowers and fruits. - Nature 279: 554-555, 1979. Go to original source...
  7. Blanke, M.M., Lenz, F.: Fruit photosynthesis. - Plant Cell Environ. 12: 31-46, 1989. Go to original source...
  8. Björkman, O., Demmig, B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. - Planta 170: 489-504, 1987. Go to original source...
  9. Clement, C., Mischler, P., Burrus, M., Audran, J.C.: Characteristics of the photosynthetic apparatus and CO2-fixation in the flower bud of Lilium. I. Corolla. - Int. J. Plant Sci. 158: 794-800, 1997a. Go to original source...
  10. Clement, C., Mischler, P., Burrus, M., Audran, J.C.: Characteristics of the photosynthetic apparatus and CO2-fixation in the flower bud of Lilium. II. Anther. - Int. J. Plant Sci. 158: 801-810, 1997b. Go to original source...
  11. Dueker, J., Arditti, J.: Photosynthetic 14CO2 fixation by green Cymbidium (Orchidaceae) flowers. - Plant Physiol. 43: 130-132, 1968. Go to original source...
  12. Galen, C., Dawson, T.E., Stanton, M.L.: Carpels as leaves: meeting the carbon cost of reproduction in an alpine buttercup. - Oecologia 95: 187-193, 1993. Go to original source...
  13. Genty, B.E., Briantais, J.-M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - Biochim. biophys. Acta 990: 87-92, 1989. Go to original source...
  14. Goh, C.J.: Rhythms of acidity and CO2 production in orchid flowers. - New Phytol. 93: 25-32, 1983. Go to original source...
  15. Grönegress P.: The structure of chromoplasts and their conversion to chloroplasts. - J. Microscopie (Paris) 19: 183-192, 1974.
  16. Heilmeier, H., Whale, D.M.: Carbon dioxide assimilation in the flowerhead of Arctium. - Oecologia 73: 109-115, 1987. Go to original source...
  17. Hetherington, S.E.: Profiling photosynthetic competence in mango fruit. - J. hortic. Sci. 72: 755-763, 1997. Go to original source...
  18. Hetherington, S.E., Smillie, R.M., Davies, W.J.: Photosynthetic activities of vegetative and fruiting tissues of tomato. - J. exp. Bot. 49: 1173-1181, 1998. Go to original source...
  19. Hew, C.S., Lee, G.L., Wong, S.C.: Occurrence of non-functional stomata in the flowers of tropical orchids. - Ann. Bot. 46: 195-201, 1980. Go to original source...
  20. Keijzer, C.J., Willemse, M.T.M.: Tissue interactions in the developing locule of Gasteria verrucosa during microsporogenesis. - Acta bot. neerl. 37: 475-492, 1988. Go to original source...
  21. Khoo, G.H., He, J., Hew, C.S.: Photosynthetic utilization of radiant energy by CAM Dendrobium flowers. - Photosynthetica 34: 367-376, 1997. Go to original source...
  22. Kirichenko, E.B., Chernyad'ev, I.I., Voronkova, T.V., Sokolova, R.S., Doman, N.G.: [Activity of the photosynthesis apparatus in orchids during flowering.] - Fiziol. Rast. 36: 710-716, 1989. [In Russ.]
  23. Kirichenko, E.B., Krendeleva, T.E., Kukarskikh, G.P., Nizovskaia, N.V.: [Photochemical activity in chloroplasts of anthers and caryopsis pericarp in cereals.] - Fiziol. Rast. 40: 250-254, 1993. [In Russ.]
  24. Larcher, W.: Ökophysiologie der Pflanzen. 6th Ed. - Ulmer, Stuttgart 2001.
  25. Luthra, Y.P., Sheoran, I.S., Singh, R.: Photosynthetic rates and enzyme activities of leaves, developing seeds and pod-wall of pigeon pea (Cajanus cajan L.). - Photosynthetica 17: 210-215, 1983.
  26. Marcelis, L.F.M., Hofman-Eijer, L.R.B.: The contribution of fruit photosynthesis to the carbon requirement of carbon requirement of cucumber fruits as affected by irradiance, temperature and ontogeny. - Physiol. Plant. 93: 476-483, 1995. Go to original source...
  27. Mathew, B.: Hellebores. - Alpine Garden Society, W.S. Cowell, Ipswich 1989.
  28. Moreshet, S., Green, G.C.: Photosynthesis and diffusion conductance of the Valencia orange fruit under field conditions. - J. exp. Bot. 31: 15-27, 1980. Go to original source...
  29. Obeso, J.R.: The costs of reproduction in plants. - New Phytol. 155: 321-348, 2002. Go to original source...
  30. Salopek-Sondi, B., Kovac, M., Ljubesic, N., Magnus, V.: Fruit initiation in Helleborus niger L. triggers chloroplast formation and photosynthesis in the perianth. - J. Plant Physiol. 157: 357-364, 2000. Go to original source...
  31. Salopek-Sondi, B., Kovac, M., Ljubesic, N., Magnus, V.: Developing fruit direct post-floral morphogenesis in Helleborus niger L. - J. exp. Bot. 53: 1949-1957, 2002. Go to original source...
  32. Schreiber, U., Bilger, W., Neubauer, C.: Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. - In: Schulze, E.-D.; Caldwell, M.M. (ed.): Ecophysiology of Photosynthesis. Pp. 49-70. Springer-Verlag, Berlin - Heidelberg - New York 1994. Go to original source...
  33. Smillie, R.M.: Calvin cycle activity in fruit and the effect of heat stress. - Sci. Hortic. 51: 83-95, 1992. Go to original source...
  34. Vainstein, A., Sharon, R.: Biogenesis of petunia and carnation corolla chloroplasts: changes in the abundance of nuclear and plastid-encoded photosynthesis-specific gene products during flower development. - Physiol. Plant. 89: 192-198, 1993. Go to original source...
  35. Vemmos, S.N., Goldwin, G.K.: Stomatal and chlorophyll distribution of Cox's Orange Pippin apple flowers relative to other cluster parts. - Ann. Bot. 71: 245-250, 1993. Go to original source...
  36. Vemmos, S.N., Goldwin, G.K.: The photosynthetic activity of Cox's orange pippin apple flowers in relation to fruit setting. - Ann. Bot. 73: 385-391, 1994. Go to original source...
  37. Watson, M.A., Caspar, B.B.: Morphogenetic constraints on patterns of carbon distribution in plants. - Annu. Rev. Ecol. Syst. 15: 233-258, 1984. Go to original source...
  38. Weiss, D., Schönfeld, M., Halevy, A.H.: Photosynthetic activities in the Petunia corolla. - Plant Physiol. 87: 666-670, 1988. Go to original source...
  39. Wellburn, A.R.: The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. - J. Plant Physiol. 144: 307-313, 1994. Go to original source...
  40. Werner, K., Ebel, F.: Zur Lebensgeschichte der Gattung Helleborus L. (Ranunculaceae). - Flora 189: 97-130, 1994. Go to original source...
  41. Werk, K.S., Ehleringer, J.R.: Photosynthesis by flowers in Encelia farinosa and Encelia californica (Asteraceae). - Oecologia 57: 311-315, 1983. Go to original source...
  42. Williams, K., Koch, G.W., Mooney, H.A.: The carbon balance of flowers of Diplacus aurantiacus (Scrophulariaceae). - Oecologia 66: 530-535, 1985. Go to original source...