Skip to main content
Log in

Hydroxycinnamates in lignification

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Hydroxycinnamates incorporate into lignins by various mechanisms. The polysaccharide esters of ferulate, in particular, and the range of dehydrodiferulates and higher oligomers in grasses, participate in free-radical (cross-)coupling reactions during lignification to become integrally bound into the lignin polymer, resulting in extensive cross-linking between lignins and polysaccharides. Monolignol-hydroxycinnamate (primarily monolignol-p-coumarate) conjugates are primary building blocks for lignins, again in grasses (but analogously with monolignol acetates and p-hydroxybenzoates in other plants); radical coupling reactions of the monolignol moiety of the conjugate result in lignins with pendant p-coumarate units acylating a variety of lignin structures. Recent evidence suggests that even the hydroxycinnamic acids themselves can be monomers in lignification in wild-type and transgenic plants, undergoing radical cross-coupling reactions to incorporate into the polymer with interesting consequences. The compatibility of ferulate, in particular, with lignification suggests that plants able to utilize monolignol-ferulate conjugates in their primary monomer supply will be particularly well suited for subsequent chemical delignification, potentially improving processes for biomass conversion to biofuels, and for chemical pulping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CCR:

Cinnamoyl-CoA reductase

NMR:

Nuclear magnetic resonance (spectroscopy)

DHP:

Dehydrogenation polymer (synthetic lignin)

AFEX:

Ammonia fiber expansion (process)

References

  • Adler E (1977) Lignin chemistry—past, present and future. Wood Sci Technol 11(3):169–218

    CAS  Google Scholar 

  • Baucher M, Monties B, Van Montagu M, Boerjan W (1998) Biosynthesis and genetic engineering of lignin. Crit Rev Plant Sci 17(2):125–197

    CAS  Google Scholar 

  • Baucher M, Halpin C, Petit-Conil M, Boerjan W (2003) Lignin: genetic engineering and impact on pulping. Crit Rev Biochem Mol Biol 38(4):305–350

    CAS  PubMed  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–549

    CAS  PubMed  Google Scholar 

  • Boudet AM (2000) Lignins and lignification: selected issues. Plant Physiol Biochem 38(1–2):81–96

    CAS  Google Scholar 

  • Boudet AM, Lapierre C, Grima-Pettenati J (1995) Biochemistry and molecular biology of lignification. New Phytol 129(2):203–236

    CAS  Google Scholar 

  • Brunow G, Lundquist K, Gellerstedt G (1999) Lignin. In: Sjöström E, Alén R (eds) Analytical methods in wood chemistry, pulping and papermaking. Springer-Verlag, Berlin, Germany, pp 77–124

    Google Scholar 

  • Bunzel M, Ralph J, Marita JM, Hatfield RD, Steinhart H (2001) Diferulates as structural components in soluble and insoluble dietary fibre. J Sci Food Agr 81(7):653–660

    CAS  Google Scholar 

  • Bunzel M, Ralph J, Kim H, Lu F, Ralph SA, Marita JM, Hatfield RD, Steinhart H (2003) Sinapate dehydrodimers and sinapate-ferulate heterodimers in cereal dietary fiber. J Agr Food Chem 51(5):1427–1434

    CAS  Google Scholar 

  • Bunzel M, Ralph J, Lu F, Hatfield RD, Steinhart H (2004) Lignins and ferulate-coniferyl alcohol cross-coupling products in cereal grains. J Agr Food Chem 52(21):6496–6502

    CAS  Google Scholar 

  • Bunzel M, Ralph J, Funk C, Steinhart H (2005) Structural elucidation of new ferulic acid-containing phenolic dimers and trimers isolated from maize bran. Tetrahedron Lett 46(35):5845–5850

    CAS  Google Scholar 

  • Bunzel M, Ralph J, Brüning P, Steinhart H (2006) Structural identification of dehydrotriferulic and dehydrotetraferulic acids isolated from insoluble maize fiber. J Agr Food Chem 54(17):6409–6418

    CAS  Google Scholar 

  • Bunzel M, Heuermann B, Kim H, Ralph J (2008) Peroxidase-catalyzed oligomerization of ferulic acid esters. J Agr Food Chem 56(21):10368–10375

    CAS  Google Scholar 

  • Carnachan SM, Harris PJ (2000) Ferulic acid is bound to the primary cell walls of all gymnosperm families. Biochem System Ecol 28:865–879

    CAS  Google Scholar 

  • del Rio JC, Marques G, Rencoret J, Martinez AT, Gutierrez A (2007) Occurrence of naturally acetylated lignin units. J Agr Food Chem 55(14):5461–5468

    CAS  Google Scholar 

  • Dixon RA, Chen F, Guo DJ, Parvathi K (2001) The biosynthesis of monolignols: a “metabolic grid”, or independent pathways to guaiacyl and syringyl units? Phytochemistry 57(7):1069–1084

    CAS  PubMed  Google Scholar 

  • Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MSS, Wang LJ (2002) The phenylpropanoid pathway and plant defence—a genomics perspective. Mol Plant Pathol 3(5):371–390

    CAS  Google Scholar 

  • Donaldson LA (2001) Lignification and lignin topochemistry - an ultrastructural view. Phytochemistry 57(6):859–873

    CAS  PubMed  Google Scholar 

  • Ford CW, Hartley RD (1989) GC/MS characterization of cyclodimers from p-coumaric and ferulic acids by photodimerization—a possible factor influencing cell wall biodegradability. J Sci Food Agr 46(3):301–310

    CAS  Google Scholar 

  • Freudenberg K, Neish AC (1968) Constitution and biosynthesis of lignin. In: Freudenberg K, Neish AC (eds) Springer-Verlag, Berlin

  • Fry SC (2004) Oxidative coupling of tyrosine and ferulic acid residues: intra- and extra-protoplasmic occurrence, predominance of trimers and larger products, and possible role in inter-polymeric cross-linking. Phytochem Revs 3(1):97–111

    CAS  Google Scholar 

  • Fry SC, Miller JC (1989) Toward a working model of the growing plant cell wall. Phenolic cross-linking reactions in the primary cell walls of dicotyledons. In: Lewis NG, Paice MG (eds) Plant cell wall polymers, biogenesis and biodegradation. Am Chem Soc, Washington, DC, pp 33–46

    Google Scholar 

  • Funk C, Ralph J, Steinhart H, Bunzel M (2005) Isolation and structural characterisation of 8–O–4/8–O–4- and 8–O–4/8–8-coupled dehydrotriferulic acids from maize bran. Phytochemistry 66(3):363–371

    CAS  PubMed  Google Scholar 

  • Gould RF (ed) (1966) Lignin structure and reactions. Am Chem Soc, Washington, DC 267 p

    Google Scholar 

  • Grabber JH, Hatfield RD, Ralph J, Zon J, Amrhein N (1995) Ferulate cross-linking in cell walls isolated from maize cell suspensions. Phytochemistry 40(4):1077–1082

    CAS  Google Scholar 

  • Grabber JH, Quideau S, Ralph J (1996a) p-Coumaroylated syringyl units in maize lignin; implications for β-ether cleavage by thioacidolysis. Phytochemistry 43(6):1189–1194

    CAS  Google Scholar 

  • Grabber JH, Ralph J, Hatfield RD, Quideau S, Kuster T, Pell AN (1996b) Dehydrogenation polymer-cell wall complexes as a model for lignified grass walls. J Agr Food Chem 44(6):1453–1459

    CAS  Google Scholar 

  • Grabber JH, Hatfield RD, Ralph J (1998a) Diferulate cross-links impede the enzymatic degradation of nonlignified maize walls. J Sci Food Agr 77(2):193–200

    CAS  Google Scholar 

  • Grabber JH, Ralph J, Hatfield RD (1998b) Ferulate cross-links limit the enzymatic degradation of synthetically lignified primary walls of maize. J Agr Food Chem 46(7):2609–2614

    CAS  Google Scholar 

  • Grabber JH, Ralph J, Hatfield RD (2000) Cross-linking of maize walls by ferulate dimerization and incorporation into lignin. J Agr Food Chem 48(12):6106–6113

    CAS  Google Scholar 

  • Grabber JH, Ralph J, Hatfield RD (2002) Model studies of ferulate-coniferyl alcohol cross-product formation in primary maize walls: implications for lignification in grasses. J Agr Food Chem 50(21):6008–6016

    CAS  Google Scholar 

  • Grabber JH, Hatfield RD, Lu F, Ralph J (2008) Coniferyl ferulate incorporation into lignin enhances the alkaline delignification and enzymatic degradation of maize cell walls. Biomacromolecules 9(9):2510–2516

    CAS  PubMed  Google Scholar 

  • Grabber JH, Mertens DR, Kim H, Funk C, Lu F, Ralph J (2009) Cell wall fermentation kinetics are impacted more by lignin content and ferulate cross-linking than by lignin composition. J Sci Food Agr 89(1):122–129

    CAS  Google Scholar 

  • Harkin JM (1967) Lignin–a natural polymeric product of phenol oxidation. In: Taylor WI, Battersby AR (eds) Oxidative coupling of phenols. Marcel Dekker, New York, pp 243–321

    Google Scholar 

  • Harkin JM (1973) Lignin. In: Butler GW (ed) Chemistry and biochemistry of herbage. Academic Press, London, pp 323–373

    Google Scholar 

  • Harris PJ, Hartley RD (1980) Phenolic constituents of the cell walls of monocotyledons. Biochem Syst Ecol 8(2):153–160

    CAS  Google Scholar 

  • Hartley RD (1972) p-Coumaric and ferulic acid components of cell walls of ryegrass and their relations with lignin and digestibility. J Sci Food Agr 23(11):1347–1354

    CAS  Google Scholar 

  • Hatfield RD (2000) The roles of ferulates in cross-linking cell wall polysaccharides. Plant Polysaccharides 2000. Wageningen, The Netherlands, pp 23–26

    Google Scholar 

  • Hatfield RD, Ralph J, Grabber JH (1999) Cell wall cross-linking by ferulates and diferulates in grasses. J Sci Food Agr 79(3):403–407

    CAS  Google Scholar 

  • Hatfield RD, Ralph J, Grabber JH (2008) A potential role of sinapyl p-coumarate as a radical transfer mechanism in grass lignin formation. Planta 228:919–928

    CAS  PubMed  Google Scholar 

  • Hatfield RD, Marita JM, Frost K, Grabber JH, Lu F, Kim H, Ralph J (2009) Grass lignin acylation: p-coumaroyl transferase activity and cell wall characteristics of C3 and C4 grasses. Planta 229(6):1253–1267

    CAS  PubMed  Google Scholar 

  • Higuchi T (1980) Biochemistry of lignification. Wood Res 66:1–16

    CAS  Google Scholar 

  • Higuchi T (1990) Lignin biochemistry: biosynthesis and biodegradation. Wood Sci Technol 24(1):23–63

    CAS  Google Scholar 

  • Higuchi T (2003) Pathways for monolignol biosynthesis via metabolic grids: coniferyl aldehyde 5-hydroxylase, a possible key enzyme in angiosperm syringyl lignin biosynthesis. Proceedings of the Japan Academy. Series B-Physical and Biological Sciences 79(8):227–236

    Google Scholar 

  • Higuchi T, Nakatsubo F (1980) Synthesis and biodegradation of oligolignols. Kem—Kemi 7(9):481–488

    CAS  Google Scholar 

  • Holtzapple MT, Lundeen JE, Sturgis R, Lewis JE, Dale BE (1992) Pretreatment of lignocellulosic municipal solid waste by ammonia fiber explosion (AFEX). Appl Biochem Biotechnol 34–35:5–21

    Google Scholar 

  • Humphreys JM, Chapple C (2002) Rewriting the lignin roadmap. Curr Opin Plant Biol 5(3):224–229

    CAS  PubMed  Google Scholar 

  • Humphreys JM, Hemm MR, Chapple C (1999) Ferulate 5-hydroxylase from Arabidopsis is a multifunctional cytochrome P450-dependent monooxygenase catalyzing parallel hydroxylations in phenylpropanoid metabolism. Proc Natl Acad Sci 96(18):10045–10050

    CAS  PubMed  Google Scholar 

  • Huntley SK, Ellis D, Gilbert M, Chapple C, Mansfield SD (2003) Significant increases in pulping efficiency in C4H–F5H-transformed poplars: improved chemical savings and reduced environmental toxins. J AgrFood Chem 51(21):6178–6183

    CAS  Google Scholar 

  • Ishii T (1991) Isolation and characterization of a diferuloyl arabinoxylan hexasaccharide from bamboo shoot cell-walls. Carbohydr Res 219:15–22

    CAS  PubMed  Google Scholar 

  • Jacquet G, Pollet B, Lapierre C, Mhamdi F, Rolando C (1995) New ether-linked ferulic acid-coniferyl alcohol dimers identified in grass straws. J Agr Food Chem 43(10):2746–2751

    CAS  Google Scholar 

  • Jung HG (2003) Maize stem tissues: ferulate deposition in developing internode cell walls. Phytochemistry 63:543–549

    CAS  PubMed  Google Scholar 

  • Jung HG, Casler MD (2006) Maize stem tissues: cell wall concentration and composition during development. Crop Sci 46(4):1793–1800

    CAS  Google Scholar 

  • Jung HG, Phillips RL (2009) Seedling ferulate ester (sfe) Maize mutant: morphology, biomass yield, and stover cell wall composition. Crop Sci (submitted)

  • Jung H, Buxton D, Hatfield R, Mertens D, Ralph J, Weimer P (1996) Improving forage fiber digestibility. Feed Mix 4(6):30–31, 33–34

    CAS  Google Scholar 

  • Kondo T, Mizuno K, Kato T (1987) Some characteristics of forage plant lignin. Jpn Agr Res Quart 21(1):47–52

    CAS  Google Scholar 

  • Lam TBT, Iiyama K, Stone BA (1992a) Changes in phenolic acids from internode walls of wheat and Phalaris during maturation. Phytochemistry 31(8):2655–2658

    CAS  Google Scholar 

  • Lam TBT, Iiyama K, Stone BA (1992b) Cinnamic acid bridges between cell wall polymers in wheat and phalaris internodes. Phytochemistry 31:1179–1183

    Google Scholar 

  • Lam TBT, Iiyama K, Stone BA (1994) Determination of etherified hydroxycinnamic acids in cell walls of grasses. Phytochemistry 36(3):773–775

    CAS  Google Scholar 

  • Landucci LL, Deka GC, Roy DN (1992) A 13C NMR study of milled wood lignins from hybrid Salix Clones. Holzforschung 46(6):505–511

    CAS  Google Scholar 

  • Lapierre C, Pollet B, Ralet MC, Saulnier L (2001) The phenolic fraction of maize bran: evidence for lignin-heteroxylan association. Phytochemistry 57(5):765–772

    CAS  PubMed  Google Scholar 

  • Lau MW, Dale BE (2009) Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A(LNH-ST). Proc Natl Acad Sci 106(5):1368–1373

    CAS  PubMed  Google Scholar 

  • Leplé J-C, Dauwe R, Morreel K, Storme V, Lapierre C, Pollet B, Naumann A, Gilles, Kang K-Y, Kim H, Ruel K et al (2007) Downregulation of cinnamoyl coenzyme A reductase in poplar; multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell 19:3669–3691

    PubMed  Google Scholar 

  • Lewis NG, Sarkanen S (eds) (1998) Lignin and lignan biosynthesis. American Chemical Society, Washington, DC, 436 p

    Google Scholar 

  • Lewis NG, Davin LB, Sarkanen S (1999) The nature and function of lignins. In: Barton DHR, Nakanishi K (eds) Comprehensive natural products chemistry. Elsevier, London, UK, pp 617–745

    Google Scholar 

  • Li S, Lundquist K (2001) Analysis of hydroxyl groups in lignins by 1H NMR spectrometry. Nordic Pulp Paper Res J 16(1):63–67

    Google Scholar 

  • Lin SY, Dence CW (1992) Methods in lignin chemistry. In: Timell TE (ed) Springer-Verlag, Heidelberg, 578 p

  • Lu F, Ralph J (1999) Detection and determination of p-coumaroylated units in lignins. J Agr Food Chem 47(5):1988–1992

    CAS  Google Scholar 

  • Lu F, Ralph J (2003) Non-degradative dissolution and acetylation of ball-milled plant cell walls; high-resolution solution-state NMR. Plant J 35(4):535–544

    CAS  PubMed  Google Scholar 

  • Lu F, Ralph J (2005) Novel β–β-structures in natural lignins incorporating acylated monolignols. Thirteenth international symposium on wood, fiber, and pulping chemistry. Auckland, New Zealand, May 16–19, 2005, vol 3. APPITA, Australia, pp 233–237

    Google Scholar 

  • Lu F, Ralph J (2008) Novel tetrahydrofuran structures derived from β–β-coupling reactions involving sinapyl acetate in Kenaf lignins. Org Biomol Chem 6(20):3681–3694

    CAS  PubMed  Google Scholar 

  • MacAdam JW, Grabber JH (2002) Relationship of growth cessation with the formation of diferulate cross-links and p-coumaroylated lignins in tall fescue leaf blades. Planta 215(5):785–793

    CAS  PubMed  Google Scholar 

  • Martone PT, Estevez JM, Lu F, Ruel K, Denny MW, Somerville C, Ralph J (2009) Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr Biol 19(2):169–175

    CAS  PubMed  Google Scholar 

  • Meyermans H, Morreel K, Lapierre C, Pollet B, De Bruyn A, Busson R, Herdewijn P, Devreese B, Van Beeumen J, Marita JM et al (2000) Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-regulation of caffeoyl-coenzyme A O-methyltransferase, an enzyme involved in lignin biosynthesis. J Biol Chem 275(47):36899–36909

    CAS  PubMed  Google Scholar 

  • Monties BL (1989) Lignins. In: Harborne J (ed) Methods in plant biochemistry. Academic Press, London, pp 113–157

    Google Scholar 

  • Monties B, Lapierre C (1981) Donnés récentes sur l’hétérogénéite de la lignine. Physiologie Végétale 19(3):327–348

    CAS  Google Scholar 

  • Mueller-Harvey I, Hartley RD, Harris PJ, Curzon EH (1986) Linkage of p-coumaryl and feruloyl groups to cell wall polysaccharides of barley straw. Carbohydr Res 148:71–85

    CAS  Google Scholar 

  • Nair RB, Bastress KL, Ruegger MO, Denault JW, Chapple C (2004) The Arabidopsis thaliana reduced epidermal fluorescence1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis. Plant Cell 16(2):544–554

    CAS  PubMed  Google Scholar 

  • Nakano J, Ishizu A, Migita N (1961) Studies on lignin. XXXII. Ester groups of lignin. Tappi 44(1):30–32

    CAS  Google Scholar 

  • Osakabe K, Tsao CC, Li L, Popko JL, Umezawa T, Carraway DT, Smeltzer RH, Joshi CP, Chiang VL (1999) Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms. Proc Natl Acad Sci 96(16):8955–8960

    CAS  PubMed  Google Scholar 

  • Paula VF, Barbosa LCA, Demuner AJ, Howarth OW, Veloso DP (1996) Chemical constituents of Ochroma lagopus Swartz. Quim Nova 19(3):225–229

    CAS  Google Scholar 

  • Quideau S, Ralph J (1997) Lignin-ferulate cross-links in grasses. Part 4. Incorporation of 5–5-coupled diferulate into lignin. J Chem Soc Perkin Trans 1(16):2351–2358

    Google Scholar 

  • Ralph J (1996) An unusual lignin from Kenaf. J Nat Prod 59(4):341–342

    CAS  Google Scholar 

  • Ralph J (2006) What makes a good monolignol substitute? In: Hayashi T (ed) The science and lore of the plant cell wall biosynthesis, structure and function. Universal Publishers (BrownWalker Press), Boca Raton, FL, pp 285–293

    Google Scholar 

  • Ralph J, Helm RF (1993) Lignin/hydroxycinnamic acid/polysaccharide complexes: synthetic models for regiochemical characterization. In: Jung HG, Buxton DR, Hatfield RD, Ralph J (eds) Forage cell wall structure and digestibility. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, WI, pp 201–246

    Google Scholar 

  • Ralph J, Lu F (1998) The DFRC method for lignin analysis. Part 6. A modified method to determine acetate regiochemistry on native and isolated lignins. J Agr Food Chem 46(11):4616–4619

    CAS  Google Scholar 

  • Ralph J, Helm RF, Quideau S, Hatfield RD (1992) Lignin-feruloyl ester cross-links in grasses. Part 1. Incorporation of feruloyl esters into coniferyl alcohol dehydrogenation polymers. J Chem Soc Perkin Trans 1(21):2961–2969

    Google Scholar 

  • Ralph J, Hatfield RD, Quideau S, Helm RF, Grabber JH, Jung H-JG (1994) Pathway of p-coumaric acid incorporation into maize lignin as revealed by NMR. J Am Chem Soc 116(21):9448–9456

    CAS  Google Scholar 

  • Ralph J, Grabber JH, Hatfield RD (1995) Lignin-ferulate crosslinks in grasses: active incorporation of ferulate polysaccharide esters into ryegrass lignins. Carbohydr Res 275(1):167–178

    CAS  Google Scholar 

  • Ralph J, Hatfield RD, Grabber JH, Jung HG, Quideau S, Helm RF (1998a) Cell wall cross-linking in grasses by ferulates and diferulates. In: Lewis NG, Sarkanen S (eds) Lignin and lignan biosynthesis. American Chemical Society, Washington, DC, pp 209–236

    Google Scholar 

  • Ralph J, Hatfield RD, Piquemal J, Yahiaoui N, Pean M, Lapierre C, Boudet A-M (1998b) NMR characterization of altered lignins extracted from tobacco plants down-regulated for lignification enzymes cinnamyl-alcohol dehydrogenase and cinnamoyl-CoA reductase. Proc Natl Acad Sci 95(22):12803–12808

    CAS  PubMed  Google Scholar 

  • Ralph J, Bunzel M, Marita JM, Hatfield RD, Lu F, Kim H, Schatz PF, Grabber JH, Steinhart H (2004a) Peroxidase-dependent cross-linking reactions of p-hydroxycinnamates in plant cell walls. Phytochem Revs 3(1):79–96

    CAS  Google Scholar 

  • Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Christensen JH et al (2004b) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem Revs 3(1):29–60

    CAS  Google Scholar 

  • Ralph J, Brunow G, Boerjan W (2007) Lignins. In: Rose F, Osborne K (eds) Encyclopedia of life sciences. Wiley, Chichester, UK, pp 1–10

    Google Scholar 

  • Ralph J, Brunow G, Harris PJ, Dixon RA, Schatz PF, Boerjan W (2008a) Lignification: are lignins biosynthesized via simple combinatorial chemistry or via proteinaceous control and template replication? In: Daayf F, El Hadrami A, Adam L, Ballance GM (eds) Recent advances in polyphenol research, vol 1. Wiley-Blackwell Publishing, Oxford,UK, pp 36–66

    Google Scholar 

  • Ralph J, Kim H, Lu F, Grabber JH, Leplé J-C, Berrio-Sierra J, Mir Derikvand M, Jouanin L, Boerjan W, Lapierre C (2008b) Identification of the structure and origin of a thioacidolysis marker compound for ferulic acid incorporation into angiosperm lignins (and an indicator for cinnamoyl-CoA reductase deficiency). Plant J 53(2):368–379

    CAS  PubMed  Google Scholar 

  • Ralph J, Schatz PF, Lu F, Kim H, Akiyama T, Nelsen SF (2009) Quinone methides in lignification. In: Rokita S (ed) Quinone methides. Wiley-Blackwell, Hoboken, NJ, pp 385–420

    Google Scholar 

  • Rouau X, Cheynier V, Surget A, Gloux D, Barron C, Meuded E, Louis-Montero J, Criton M (2003) A dehydrotrimer of ferulic acid from maize bran. Phytochemistry 63:899–903

    CAS  PubMed  Google Scholar 

  • Sakakibara A (1991) Chemistry of lignin. In: Hon DN-S, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker, New York, pp 113–175

    Google Scholar 

  • Sarkanen KV, Ludwig CH (1971) Lignins, occurrence, formation, structure and reactions. Wiley-Interscience, New York

    Google Scholar 

  • Schatz PF, Ralph J, Lu F, Guzei IA, Bunzel M (2006) Synthesis and identification of 2, 5-bis-(4-hydroxy-3-methoxyphenyl)-tetrahydrofuran-3, 4-dicarboxylic acid, an unanticipated ferulate 8–8-coupling product acylating cereal plant cell walls. Org Biomol Chem 4(14):2801–2806

    CAS  PubMed  Google Scholar 

  • Seca AML, Silva AMS, Silvestre AJD, Cavaleiro JAS, Domingues FMJ, Pascoal-Neto C (2001) Phenolic constituents from the core of Kenaf (Hibiscus cannabinus). Phytochemistry 56(7):759–767

    CAS  PubMed  Google Scholar 

  • Sederoff R, Chang HM (1991) Lignin biosynthesis. In: Lewin M, Goldstein IS (eds) Wood structure and composition. Marcel Dekker, New York, pp 263–285

    Google Scholar 

  • Shimada M, Fukuzuka T, Higuchi T (1971) Ester linkages of p-coumaric acid in bamboo and grass lignins. Tappi 54(1):72–78

    CAS  Google Scholar 

  • Smith DCC (1955) p-Hydroxybenzoates groups in the lignin of Aspen (Populus tremula). J Chem Soc 2347

  • Sun RC, Fang JM, Tomkinson J (1999) Fractional isolation and structural characterization of lignins from oil palm trunk and empty fruit bunch fibres. J Wood Chem Technol 19(4):335–356

    CAS  Google Scholar 

  • Takahama U, Oniki T (1994) Effects of ascorbate on the oxidation of derivatives of hydroxycinnamic acid and the mechanism of oxidation of sinapic acid by cell wall-bound peroxidases. Plant Cell Physiol 35(4):593–600

    CAS  Google Scholar 

  • Takahama U, Oniki T, Shimokawa H (1996) A possible mechanism for the oxidation of sinapyl alcohol by peroxidase-dependent reactions in the apoplast: enhancement of the oxidation by hydroxycinnamic acids and components of the apoplast. Plant Cell Physiol 37(4):499–504

    CAS  Google Scholar 

  • Weng JK, Li X, Bonawitz ND, Chapple C (2008) Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Opin Biotechnol 19(2):166–172

    CAS  PubMed  Google Scholar 

  • Whetten R, Sederoff R (1995) Lignin biosynthesis. Plant Cell 7:1001–1013

    CAS  PubMed  Google Scholar 

  • Yamamoto E, Bokelman GH, Lewis NG (1989) Phenylpropanoid metabolism in cell walls. An overview. In: Lewis NG, Paice MG (eds) Plant cell wall polymers. Biogenesis and biodegradation. American Chemical Society, Washington, DC pp 68–88

    Google Scholar 

  • Zhang A, Lu F, Sun R, Ralph J (2009) Ferulate-coniferyl alcohol cross-coupled products formed by radical coupling reactions. Planta 229(5):1099–1108

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge partial funding for through the DOE Energy Biosciences program (#DE-AI02-00ER15067) and the USDA-NRI (#2003-35503-13820), along with new funding from Stanford University’s Global Climate and Energy Program (GCEP) to pursue approaches toward lignin modification; some aspects of this research were funded in by the DOE Great Lakes Bioenergy Research Center (www.greatlakesbioenergy.org), which is supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through Cooperative Agreement DE-FC02-07ER64494 between The Board of Regents of the University of Wisconsin System and the US Department of Energy. The author is grateful to many coworkers and collaborators who worked on many of these aspects, including but not limited to: Mirko Bunzel, John Grabber, Ron Hatfield, Fachuang Lu, Hoon Kim, Takuya Akiyama, Jane Marita, Paul Schatz, Junpeng Peng, Richard Helm, Stéphane Quideau, Catherine Lapierre, Wout Boerjan, Clint Chapple, Gösta Brunow, and Hans Jung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Ralph.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ralph, J. Hydroxycinnamates in lignification. Phytochem Rev 9, 65–83 (2010). https://doi.org/10.1007/s11101-009-9141-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-009-9141-9

Keywords

Navigation