Skip to main content

Advertisement

Log in

Azaphilones: a class of fungal metabolites with diverse biological activities

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

This review presents an overview of azaphilones isolated from different species of fungi, detailing their chemical structures and biological activities as covered in the recent literature. Over 170 different azaphilone compounds occur in fungi belonging to 23 genera from 13 families: these azaphilones can be classified into ten different structural groups. Numerous azaphilone structures have been described, particularly from members of the Trichocomaceae and Xylariaceae families. Azaphilones exhibit a wide range of interesting biological activities, such as antimicrobial, antifungal, antiviral, antioxidant, cytotoxic, nematicidal and anti-inflammatory activities. Many of these effects may be explained by the reactions of azaphilones with amino groups, such as those found in amino acids, proteins and nucleic acids, resulting in the formation of vinylogous γ-pyridones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akihisa T, Tokuda H, Ukiya M, Kiyota A, Yasukawa K, Sakamoto N, Kimura Y, Suzuki T, Takayasu J, Nishino H (2005a) Anti-tumor-initiating effects of monascin, an azaphilonoid pigment from the extract of Monascus pilosus fermented rice (red-mold rice). Chem Biodiversity 2:1305–1309

    Article  CAS  Google Scholar 

  • Akihisa T, Tokuda H, Yasukawa K, Ukiya M, Kiyota A, Sakamoto N, Suzuki T, Tanabe N, Nishino H (2005b) Azaphilones, furanoisophthalides, and amino acids from the extracts of Monascus pilosus—fermented rice (Red-Mold Rice) and their chemopreventive effects. J Agric Food Chem 53:562–565

    Article  PubMed  CAS  Google Scholar 

  • Anke H, Kemmer T, Höfle G (1981) Deflectins, new antimicrobial azaphilones from Aspergillus deflectus. J Antibiot 34:923–928

    PubMed  CAS  Google Scholar 

  • Arai N, Shiomi K, Tomoda H, Tabata N, Yang DJ, Masuma R, Kawakubo T, Omura S (1995) Isochromophilones III-VI, inhibitors of acyl-CoA: cholesterol acyltransferase produced by Penicillium multicolor FO-3216. J Antibiot 48:696–702

    PubMed  CAS  Google Scholar 

  • Ariza MR, Larsen TO, Petersen BO, Duus JO, Christophersen C, Barrero AF (2001) A novel Alkaloid Serantrypinone and the Spiro Azaphilone Daldinin D from Penicillium thymicola. J Nat Prod 64:1590–1592

    Article  CAS  Google Scholar 

  • Beed FD, Strange RN, Onfroy C, Tivoli B (1994) Virulence for faba bean and production of ascochitine by Ascochyta fabae. Plant Pathol 43:987–997

    Article  CAS  Google Scholar 

  • Bell PJL, Karuso P (2003) Epicocconone, a novel fluorescent compound from the fungus Epicoccum nigrum. J Am Chem Soc 125:9304–9305

    Article  PubMed  CAS  Google Scholar 

  • Blanc PJ, Laussac JP, Le Bars J, Le Bars P, Loret MO, Pareilleux A, Prome D, Prome JC, Santerre AL, Goma G (1995) Characterization of monascidin A from Monascus as citrinin. Int J Food Microbiol 27:201–213

    Article  PubMed  CAS  Google Scholar 

  • Buchanan MS, Hashimoto T, Yasuda A, Takaoka S, Kan Y, Asakawa Y (1995) The structures of novel cytochalasins, azaphilones, and aromatic compounds isolated from five ascomycetous fungi. Tennen Yuki Kagobutsu Toronkai Koen Yoshishu 37:409–414

    Google Scholar 

  • Buechi G, White JD, Wogan GN (1965) The structures of mitorubrin and mitorubrinol. J Am Chem Soc 87:3484–3489

    Article  PubMed  CAS  Google Scholar 

  • Campoy S, Rumbero A, Martin JF, Liras P (2006) Characterization of a hyperpigmenting mutant of Monascus purpureus IB1: identification of two novel pigment chemical structures. Appl Microbiol Biotechnol 70:488–496

    Article  PubMed  CAS  Google Scholar 

  • Chidananda C, Rao L, Sattur A (2006) Sclerotiorin, from Penicillium frequentans, a potent inhibitor of aldose reductase. Biotechnol Lett 28:1633–1636

    Article  PubMed  CAS  Google Scholar 

  • Closse A, Hauser D (1973) Isolation and constitution of chrysodin. Helv Chim Acta 56:2694–2698 Journal written in German

    Article  PubMed  CAS  Google Scholar 

  • Ding G, Liu S, Guo L, Zhou Y, Che Y (2008) Antifungal metabolites from the plant endophytic fungus Pestalotiopsis foedan. J Nat Prod 71:615–618

    Article  PubMed  CAS  Google Scholar 

  • Dong J, Zhou Y, Li R, Zhou W, Li L, Zhu Y, Huang R, Zhang K (2006) New nematicidal azaphilones from the aquatic fungus Pseudohalonectria adversaria YMF1.01019. FEMS Microbiol Lett 264:65–69

    Article  PubMed  CAS  Google Scholar 

  • Duncan SJ, Grueschow S, Williams DH, McNicholas C, Purewal R, Hajek M, Gerlitz M, Martin S, Wrigley SK, Moore M (2001) Isolation and structure elucidation of chlorofusin, a novel p53-MDM2 antagonist from a Fusarium sp. J Am Chem Soc 123:554–560

    Article  PubMed  CAS  Google Scholar 

  • Duncan SJ, Cooper MA, Williams DH (2003) Binding of an inhibitor of the p53/MDM2 interaction to MDM2. Chem Commun 3:316–317

    Article  CAS  Google Scholar 

  • Endo A, Kuroda M (1976) Citrinin, an inhibitor of cholesterol synthesis. J Antibiot 29:841–843

    PubMed  CAS  Google Scholar 

  • Frisvad JC, Filtenborg O, Samson RA, Stolk AC (1990) Chemotaxonomy of the genus Talaromyces. Antonie van Leeuwenhoek 57:179–189

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto H, Matsudo T, Yamaguchi A, Yamazaki M (1990) Two new fungal azaphilones from Talaromyces luteus, with monoamine oxidase inhibitory effect. Heterocycles 30:607–616

    Article  CAS  Google Scholar 

  • Gill M (1996) Pigments of fungi (Macromycetes). Nat Prod Rep 13:513–528

    Article  CAS  Google Scholar 

  • Gill M (1999) Pigments of fungi (Macromycetes). Nat Prod Rep 16:301–317

    Article  CAS  Google Scholar 

  • Gill M, Steglich W (1987) Pigments of fungi (Macromycetes). Prog Chem Org Nat Prod 51:1–317

    CAS  Google Scholar 

  • Gray RW, Whalley WB (1971) The chemistry of fungi. Part LXIII. Rubrorotiorin, a metabolite of Penicillium hirayamae Udagawa. J Chem Soc 21:3575–3577

    CAS  Google Scholar 

  • Hajjaj H, Klaebe A, Loret MO, Goma G, Blanc PJ, Francois J (1999) Biosynthetic pathway of citrinin in the filamentous fungus Monascus ruber as revealed by 13C nuclear magnetic resonance. Appl Environ Microbiol 65:311–314

    PubMed  CAS  Google Scholar 

  • Haraguchi H, Taniguchi M, Motoba K, Shibata K, Oi S, Hashimoto K (1990) Chrysodin, an antifungal antimetabolite. Agric Biol Chem 54:2167–2168

    CAS  Google Scholar 

  • Hashimoto T, Asakawa Y (1998) Biologically active substances of Japanese inedible mushrooms. Heterocycles 47:1067–1110

    Article  CAS  Google Scholar 

  • Hashimoto T, Tahara S, Takaoka S, Tori M, Asakawa Y (1994) Structures of daldinins A.apprx.C, three novel azaphilone derivatives from ascomycetous fungus Daldinia concentrica. Chem Pharm Bull 42:2379–2397

    Google Scholar 

  • Hellwig V, Ju YM, Rogers JD, Fournier J, Stadler M (2005) Hypomiltin, a novel azaphilone from Hypoxylon hypomiltum, and chemotypes in Hypoxylon sect. Hypoxylon as inferred from analytical HPLC profiling. Mycol Prog 4:39–54

    Article  Google Scholar 

  • Hobbs C (2003) Medicinal mushrooms: an exploration of tradition, health and culture. Botanica press, Canada

    Google Scholar 

  • Hutchinson CR (1999) Microbial polyketide synthases: more and more prolific. Proc Natl Acad Sci USA 96:3336–3338

    Article  PubMed  CAS  Google Scholar 

  • Hyodo S, Fujita K, Kasuya O, Takahashi I, Uzawa J, Koshino H (1994) Structures of phospholipase A2 inhibitors, ergophilone A and B. Tennen Yuki Kagobutsu Toronkai Koen Yoshishu 36:760–767

    Google Scholar 

  • Itabashi T, Nozawa K, Nakajima S, Kawai KI (1993) A new azaphilone, falconensin H, from Emericella falconensis. Chem Pharm Bull 41:2040–2041

    CAS  Google Scholar 

  • Itabashi T, Ogasawara N, Nozawa K, Kawai KI (1996) Isolation and structures of new azaphilone derivatives, falconensins E-G, from Emericella falconensis and absolute configurations of falconensins A-G. Chem Pharm Bull 44:2213–2217

    CAS  Google Scholar 

  • Jongrungruangchok S, Kittakoop P, Yongsmith B, Bavovada R, Tanasupawat S, Lartpornmatulee N, Thebtaranonth Y (2004) Azaphilone pigments from a yellow mutant of the fungus Monascus kaoliang. Phytochemistry 65:2569–2575

    Article  PubMed  CAS  Google Scholar 

  • Ju HM, Hsieh HM, Rogers JD (2005) Molecular phylogeny of Hypoxylon and closely related genera. Mycologia 97:844–865

    Article  PubMed  Google Scholar 

  • Kanokmedhakul S, Kanokmedhakul K, Nasomjai P, Louangsysouphanh S, Soytong K, Isobe M, Kongsaeree P, Prabpai S, Suksamrarn A (2006) Antifungal Azaphilones from the fungus Chaetomium cupreum CC3003. J Nat Prod 69:891–895

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Nishida M, Kuramochi K, Sugawara F, Yoshida H, Mizushina Y (2008) Novel azaphilones, kasanosins A and B, which are specific inhibitors of eukaryotic DNA polymerases beta and lambda from Talaromyces sp. Bioorg Med Chem 16:4594–4599

    Article  PubMed  CAS  Google Scholar 

  • Kirk PM, Cannon PE, Minter DW, Stalpers JA (2008) Dictionary of fungi, 10th edn. CABI Europe, UK

    Google Scholar 

  • Kono K, Tanaka M, Ono Y, Hosoya T, Ogita T, Kohama T (2001) S-15183a and b, new sphingosine kinase inhibitors, produced by a fungus. J Antibiot 54:415–420

    PubMed  CAS  Google Scholar 

  • Kurono M, Nakanishi K, Shindo K, Tada M (1963) Biosyntheses of monascorubrin and monascoflavin. Chem Pharm Bull 11:359–362

    CAS  Google Scholar 

  • Kusnick C, Jansen R, Liberra K, Lindequist U (2002) Ascochital, a new metabolite from the marine ascomycete Kirschsteiniothelia maritima. Pharmazie 57:510–512

    PubMed  CAS  Google Scholar 

  • Laakso JA, Raulli R, McElhaney-Feser GE, Actor P, Underiner TL, Hotovec BJ, Mocek U, Cihlar RL, SEJr Broedel (2003) CT2108A and B: new fatty acid synthase inhibitors as antifungal agents. J Nat Prod 66:1041–1046

    Article  PubMed  CAS  Google Scholar 

  • Lesova K, Sturdikova M, Rosenberg M (2000a) Factors affecting the production of (−)- mitorubrinic acid by Penicillium funiculosum. J Basic Microbiol 40:369–375

    Article  PubMed  CAS  Google Scholar 

  • Lesova K, Sturdikova M, Tybitanclova K (2000b) Selection of mutant strain of Penicillium funiculosum for (−)- mitorubrinic acid production. Biologia (Bratislava) 55:633–636

    CAS  Google Scholar 

  • Lindequist U, Niedermeyer THJ, Jülich WD (2005) The pharmacological potential of mushrooms. eCAM 2:285–299

    PubMed  Google Scholar 

  • Locci R, Merlini L, Nasini G, Locci JR (1967) Mitorubrinic acid and related compounds from a strain of Penicillium funiculosum. Gioron Microbiol 15:92–102

    CAS  Google Scholar 

  • Lorenzen K, Anke T (1998) Basidiomycetes as a source for new bioactive natural products. Curr Org Chem 2:329–364

    CAS  Google Scholar 

  • Manchand PS, Whalley WB, Chen FC (1973) Isolation and structure of ankaflavine. New pigment from Monascus anka. Phytochemistry 12:2531–2532

    Article  CAS  Google Scholar 

  • Mapari S, Meyer AS, Thrane U, Frisvad JC (2009) Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chemotaxonomic rationale. Microb Cell Fact 8:24

    Article  PubMed  CAS  Google Scholar 

  • Marumo S, Nukina M, Kondo S, Tomiyama K (1982) Lunatoic acid A, a morphogenic substance inducing chlamydospore-like cells in some fungi. Agric Biol Chem 46:2399–2401

    CAS  Google Scholar 

  • Matsuzaki K, Tanaka H, Omura S (1995) Isochromophilones I and II, novel inhibitors against gp120-CD4 binding produced by Penicillium multicolor FO-2338. II. Structure elucidation. J Antibiot 48:708–713

    PubMed  CAS  Google Scholar 

  • Matsuzaki K, Tahara H, Inokoshi J, Tanaka H, Masuma R, Omura S (1998) New brominated and halogen-less derivatives and structure-activity relationship of azaphilones inhibiting gp120-CD4 binding. J Antibiot 51:1004–1011

    PubMed  CAS  Google Scholar 

  • Merlini L, Mondelli R, Nasini G, Hesse M (1973) Structure of wortmin, a new metabolite from Penicillium wortmannii. Helv Chim Acta 561:232–239

    Article  Google Scholar 

  • Michael AP, Grace EJ, Kotiw M, Barrow RA (2003) Isochromophilone IX, a novel GABA-containing metabolite isolated from a cultured fungus, Penicillium sp. Aust J Chem 56:13–15

    Article  CAS  Google Scholar 

  • Ming GH, Yun ZW, Ding G, Saparpakorn P, Chun SY, Hannongbua S, Tan RX (2008) Chaetoglobins A and B, two unusual alkaloids from endophytic Chaetomium globosum culture. Chem Commun (Cambridge, UK) 45:5978–5980

    Article  CAS  Google Scholar 

  • Miyake T, Kono I, Nozaki N, Sammoto H (2008) Analysis of pigment compositions in various Monascus cultures. Food Sci Technol Res 14:194–197

    Article  CAS  Google Scholar 

  • Molitoris HP (2002) Mushrooms in medicine, folklore and religion. Feddes Repertiorum 113:165–182

    Google Scholar 

  • Mühlbauer A, Triebel D, Persoh D, Wollweber H, Seip S, Stadler M (2002) Macrocarpones, novel metabolites from stromata of Hypoxylon macrocarpum and new evidence on thechemotaxonomy of Hypoxylon. Mycol Prog 1:235–248

    Article  Google Scholar 

  • Muroga Y, Yamada T, Numata A, Tanaka R (2008) Chaetomugilins, new selectively cytotoxic metabolites, produced by a marine fish-derived Chaetomium species. J Antibiot 61:615–622

    Article  Google Scholar 

  • Muroga Y, Yamada T, Numata A, Tanaka R (2009) Chaetomugilins I–O, new potent cytotoxic metabolites from a marine-fish-derived Chaetomium species. Stereochemistry and biological activities. Tetrahedron 65:7580–7586

    Article  CAS  Google Scholar 

  • Nakajima H, Kimura Y, Hamasaki T (1992) Spiciferinone, an azaphilone phytotoxin produced by the fungus Cochiliobolus spicifer. Phytochemistry 31:105–107

    Article  CAS  Google Scholar 

  • Nam JY, Son KH, Kim HK, Han MY, Kim SU, Choi JD, Kwon BM (2000) Sclerotiorin and isochromophilone IV: inhibitors of Grb2-Shc interaction, isolated from Penicillium multicolor F1753. J Microbiol Biotechnol 10:544–546

    CAS  Google Scholar 

  • Natsume M, Takahashi Y, Marumo S (1988) Chlamydospore-like cell-inducing substances of fungi: close correlation between chemical reactivity with methylamine and biological activity. Agric Biol Chem 52:307–331

    CAS  Google Scholar 

  • Nukina M, Marumo S (1977) Lunatoic acid A and B, aversion factor and its related metabolite of Cochliobolus lunata. Tetrahedron Lett 30:2603–2606

    Article  Google Scholar 

  • Ogasawara N, Kawai KI (1998) Hydrogenated azaphilones from Emericella falconensis and E. fruticulosa. Phytochemistry 47:1131–1135

    Article  CAS  Google Scholar 

  • Osmanova N (2010) Screening of antimicrobial effects of selected fungi and studies on bioactive constituents of Bulgaria inquinans (Pers.) Fr. (Bulgariaceae) and Meripilus giganteus (Pers.: Fr.) P. Karst. (Meripilaceae)

  • Pairet L, Wrigley SK, Chetland I, Reynolds EE, Hayes MA, Holloway J, Ainsworth AM, Katzer W, Cheng XM (1995) Azaphilones with endothelin receptor binding activity produced by Penicillium sclerotiorum: taxonomy, fermentation, isolation, structure elucidation and biological activity. J Antibiot 48:913–923

    PubMed  CAS  Google Scholar 

  • Park JH, Choi GJ, Jang KS, Lim HK, Kim HT, Cho KY, Kim JC (2005) Antifungal activity against plant pathogenic fungi of chaetoviridins isolated from Chaetomium globosum. FEMS Microbial Lett 252:309–313

    Article  CAS  Google Scholar 

  • Pelaez F, Gonzalez V, Platas G, Sanchez-Ballesteros J, Rubio V (2008) Molecular phylogenetic studies within the Xylariaceae based on ribosomal DNA sequences. Fungal Divers 31:111–134

    Google Scholar 

  • Phonkerd N, Kanokmedhakul S, Kanokmedhakul K, Soytong K, Prabpai S, Kongsearee P (2008) Bis-spiro-azaphilones and azaphilones from the fungi Chaetomium cochliodes VTh01 and C. cochliodes CTh05. Tetrahedron 64:9636–9645

    Article  CAS  Google Scholar 

  • Pisareva E, Savov V, Kujumdzieva A (2005) Pigments and citrinin biosynthesis by fungi belonging to genus Monascus. Z. Naturforsch 60:116–120

    CAS  Google Scholar 

  • Proksa B, Uhrin D, Fuska J, Michalkova E (1992) (−)- Mitorubrinol and phthaldehydic acids, new metabolites of Penicillium vermiculatum DANG. Collect Czech Chem Commun 57:408–414

    Article  CAS  Google Scholar 

  • Qian-Cutrone J, Huang S, Chang LP, Pirnik DM, Klohr SE, Dalterio RA, Hugill R, Lowe S, Alam M, Kadow KF (1996) Harziphilone and fleephilone, two new HIV REV/RRE binding inhibitors produced by Trichoderma harzianum. J Antibiot 49:990–997

    PubMed  CAS  Google Scholar 

  • Quang DN, Hashimoto T, Stadler M, Asakawa Y (2004a) New azaphilones from the inedible mushroom Hypoxylon rubiginosum. J Nat Prod 67:1152–1155

    Article  PubMed  CAS  Google Scholar 

  • Quang DN, Hashimoto T, Tanaka M, Stadler M, Asakawa Y (2004b) Cyclic azaphilones daldinins E and F from the ascomycete fungus Hypoxylon fuscum (Xylariaceae). Phytochemistry 65:469–473

    Article  PubMed  CAS  Google Scholar 

  • Quang DN, Hashimoto T, Fournier J, Stadler M, Radulovic N, Asakawa Y (2005a) Sassafrins A-D, new antimicrobial azaphilones from the fungus Creosphaeria sassafras. Tetrahedron 61:1743–1748

    Article  CAS  Google Scholar 

  • Quang DN, Hashimoto T, Nomura Y, Wollweber H, Hellwig V, Fournier J, Stadler M, Asakawa Y (2005b) Cohaerins A and B, azaphilones from the fungus Hypoxylon cohaerens, and comparison of HPLC-based metabolite profiles in Hypoxylon sect. Annulata. Phytochemistry 66:797–809

    Article  PubMed  CAS  Google Scholar 

  • Quang DN, Hashimoto T, Stadler M, Asakawa Y (2005c) Dimeric azaphilones from the xylariaceous ascomycete Hypoxylon rutilum. Tetrahedron 61:8451–8455

    Article  CAS  Google Scholar 

  • Quang DN, Hashimoto T, Stadler M, Radulovic N, Asakawa Y (2005d) Antimicrobial azaphilones from the fungus Hypoxylon multiforme. Planta Med 71:1058–1062

    Article  PubMed  CAS  Google Scholar 

  • Quang DN, Hashimoto T, Asakawa Y (2006a) Inedible mushrooms: a good source of biologically active substances. Chem Rec 6:79–99

    Article  PubMed  CAS  Google Scholar 

  • Quang DN, Harinantenaina L, Nishizawa T, Hashimoto T, Kohchi C, Soma GI, Asakawa Y (2006b) Inhibition of nitric oxide production in RAW 264.7 cells by azaphilones from xylariaceous fungi. Biol Pharm Bull 29:34–37

    Article  PubMed  CAS  Google Scholar 

  • Quang DN, Stadler M, Fournier J, Tomita A, Hashimoto T (2006c) Cohaerins C- F, four azaphilones from the xylariaceous fungus Annulohypoxylon cohaerens. Tetrahedron 62:6349–6354

    Article  CAS  Google Scholar 

  • Rogers JD, Ju YM, Watling R, Whalley AJS (1999) A reinterpretation of Daldinia concentrica based upon a recently discovered specimen. Mycotaxon 72:507–520

    Google Scholar 

  • Sakuda S, Otsubo Y, Yamada Y (1995) Structure of patulodin, a new azaphilone epoxide, produced by Penicillium urticae. J Antibiot 48:85–86

    PubMed  CAS  Google Scholar 

  • Seibert SF, Eguereva E, Krick A, Kehraus S, Voloshina E, Raabe G, Fleischhauer J, Leistner E, Wiese M, Prinz H, Alexandrov K, Janning P, Waldmann H, Koenig GM (2006) Polyketides from the marine-derived fungus Ascochyta salicorniae and their potential to inhibit protein phosphatases. Org Biomol Chem 4:2233–2240

    Article  PubMed  CAS  Google Scholar 

  • Seto H, Tanabe M (1974) Utilization of 13C–13C coupling in structural and biosynthetic studies. III. Ochrephilone—a new fungal metabolite. Tetrahedron Lett 15:651–654

    Article  Google Scholar 

  • Stadler M, Fournier J (2006) Pigment chemistry, taxonomy and phylogeny of the Hypoxyloideae (Xylariaceae). Rev Iberoam Micol 23:160–170

    Article  PubMed  Google Scholar 

  • Stadler M, Akne H, Dekermendjian K, Reiss R, Sterner O, Witt R (1995) Novel bioactive azaphilones from fruit bodies and mycelial cultures of the Ascomycete Bulgaria inquinans (FR.). Nat Prod Lett 7:7–14

    CAS  Google Scholar 

  • Stadler M, Baumgartner M, Grothe T, Muehlbauer A, Seip S, Wollweber H (2001a) Concentricol, a taxonomically significant triterpenoid from Daldinia concentrica. Phytochemistry 56:787–793

    Article  PubMed  CAS  Google Scholar 

  • Stadler M, Wollweber H, Mühlbauer A, Asakawa Y, Hashimoto T, Rogers JD, Ju Y-M, Wetzstein HG, Tichy HV (2001b) Molecular chemotaxonomy of Daldinia and other Xylariaceae. Mycol Res 105:1191–1205

    Article  CAS  Google Scholar 

  • Stadler M, Laessoe T, Vasilyeva L (2005) The genus Pyrenomyxa and its affinities to other cleistocarpous Hypoxyloideae as inferred from morphological and chemical traits. Mycologia 97:1129–1139

    Article  PubMed  CAS  Google Scholar 

  • Stadler M, Quang DN, Tomita A, Hashimoto T, Asakawa Y (2006) Changes in secondary metabolism during stromatal ontogeny of Hypoxylon fragiforme. Mycol Res 110:811–820

    Article  PubMed  CAS  Google Scholar 

  • Steglich W (1981) Biologically active compounds from higher fungi. Pure Appl Chem 53:1233–1240

    Article  CAS  Google Scholar 

  • Steglich W, Klaar M, Furtner W (1974) (+)-Mitorubrin derivatives from Hypoxylon fragiforme. Phytochemistry 13:2874–2875

    Article  CAS  Google Scholar 

  • Steglich W, Fugmann B, Lang-Fugmann S (2001) RÖMPP Encyclopedia natural products. Georg Thieme Verlag, New York

    Google Scholar 

  • Steyn PS, Vleggaar R (1986) A reinvestigation of the structure of monochaetin, a metabolite of Monochaetia compta. J Chem Soc 11:1975–1976

    Google Scholar 

  • Sturdikova M, Slugen D, Lesova K, Rosenberg M (2000) Mikrobialna produkcia farbnych azaphilonovych metabolitov. Chem Listy 94:105–110

    CAS  Google Scholar 

  • Suzuki S, Hosoe T, Nozawa K, Yaguchi T, Udagawa SI, Kawai KI (1999) Mitorubrin derivatives on ascomata of some Talaromyces species of ascomycetous fungi. J Nat Prod 62:1328–1329

    Article  PubMed  CAS  Google Scholar 

  • Tabata Y, Ikegami S, Yaguchi T, Sasaki T, Hoshiko S, Sakuma S, Shin-Ya K, Seto H (1999) Diazaphilonic acid, a new azaphilone with telomerase inhibitory activity. J Antibiot 52:412–414

    PubMed  CAS  Google Scholar 

  • Takahashi M, Koyama K, Natori S (1990) Four new azaphilones from Chaetomium globosum var. flavo-viridae. Chem Pharm Bull 38:625–628

    CAS  Google Scholar 

  • Thines E, Anke H, Sterner O (1998) Trichoflectin, a bioactive azaphilone from the ascomycete Trichopezizella nidulus. J Nat Prod 61:306–308

    Article  PubMed  CAS  Google Scholar 

  • Toki S, Tanaka T, Uosaki Y, Yoshida M, Suzuki Y, Kita K, Mihara A, Ando K, Lokker NA, Giese NA, Matsuda Y (1999) RP-1551s, a family of azaphilones produced by Penicillium sp., inhibit the binding of PDGF to the extracellular domain of its receptor. J Antibiot 52:235–244

    PubMed  CAS  Google Scholar 

  • Tomoda H, Matsushima C, Tabata N, Namatame I, Tanaka H, Bamberger MJ, Arai H, Fukazawa M, Inoue K, Omura S (1999) Structure-specific inhibition of cholesteryl ester transfer protein by azaphilones. J Antibiot 52:160–170

    PubMed  CAS  Google Scholar 

  • Turner WB (1971) Fungal metabolites. Academic press, London

    Google Scholar 

  • Turner WB, Aldridge DC (1983) Fungal metabolites II. Academic press, London

    Google Scholar 

  • Velisek J, Davidek J, Cejpek K (2008) Biosynthesis of food constituents: natural pigments. Part 2—a review. Czech J Food Sci 26:73–98

    CAS  Google Scholar 

  • Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol 43:143–148

    Article  PubMed  CAS  Google Scholar 

  • Vleggaar R, Steyn PS, Nagel DW (1974) Constitution and absolute configuration of austdiol, the main toxic metabolite from Aspergillus ustus. J Chem Soc 1:45–49

    CAS  Google Scholar 

  • Wasser SP (2002) Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 60:258–274

    Article  PubMed  CAS  Google Scholar 

  • Wei WG, Yao ZJ (2005) Synthesis studies toward chloroazaphilone and vinylogous γ-pyridones: two common natural product core structures. J Org Chem 70:4585–4590

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Doi M, Shigeta H, Muroga Y, Hosoe S, Numata A, Tanaka R (2008) Absolute stereostructures of cytotoxic metabolites, chaetomugilins A-C, produced by a Chaetomium species separated from a marine fish. Tetrahedron Lett 49:4192–4195

    Article  CAS  Google Scholar 

  • Yamada T, Muroga Y, Tanaka R (2009) New Azaphilones, Seco-Chaetomugilins A and D, produced by a marine-fish-derived Chaetomium globosum. Mar. Drugs 7:249–257

    Article  CAS  Google Scholar 

  • Yang DJ, Tomoda H, Tabata N, Masuma R, Omura S (1996) New isochromophilones VII and VIII produced by Penicillium sp. FO-4164. J Antibiot 49:223–229

    PubMed  CAS  Google Scholar 

  • Yang SW, Chan TM, Terracciano J, Patel R, Patel M, Gullo V, Chu M (2006) A new hydrogenated azaphilone Sch 725680 from Aspergillus sp. J Antibiot 59:720–723

    Article  PubMed  CAS  Google Scholar 

  • Yang SW, Chan TM, Terracciano J, Loebenberg D, Patel M, Gullo V, Chu M (2009) Sch 1385568, a new azaphilone from Aspergillus sp. J Antibiot 62:401–403

    Article  PubMed  CAS  Google Scholar 

  • Yasukawa K, Takahashi M, Natori S, Kawai KI, Yamazaki M, Takeuchi M, Takido M (1994) Azaphilones inhibit tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mice. Oncology 51:108–112

    Article  PubMed  CAS  Google Scholar 

  • Yasukawa K, Itabashi T, Kawai KI, Takido M (2008) Inhibitory effects of falconensins on 12-O-tetradecanoylphorbol-13-acetate-induced inflammatory ear edema in mice. J Nat Med 62:384–386

    Article  PubMed  CAS  Google Scholar 

  • Ying J, Mao X, Ma Q, Zong Y, Wen H (1987) Icons of medicinal fungi from China. Science press, Beijing

    Google Scholar 

  • Yoshida E, Fujimoto H, Baba M, Yamazaki M (1995) Four new chlorinated azaphilones, helicusins A-D, closely related to 7-epi-sclerotiorin, from an ascomycetous fungus, Talaromyces helicus. Chem. Pharm Bull 43:1307–1310

    CAS  Google Scholar 

  • Yoshida E, Fujimoto H, Yamazaki M (1996a) Ex vivo study on MAO inhibitory activity of luteusin A, from an ascomycete Talaromyces luteus, and Ro16–6491, a reversible MAO-B inhibitor. J Nat Med 50:54–57

    CAS  Google Scholar 

  • Yoshida E, Fujimoto H, Yamazaki M (1996b) Revised stereostructures of luteusins C and D. Chem Pharm Bull 44:1775

    CAS  Google Scholar 

  • Yoshida E, Fujimoto H, Yamazaki M (1996c) Isolation of three new azaphilones, luteusins C, D, and E, from an ascomycete, Talaromyces luteus. Chem Pharm Bull 44:284–287

    PubMed  CAS  Google Scholar 

  • Yu BZ, Zhang GH, Du ZZ, Zheng YT, Xu JC, Luo XD (2008) Phomoeuphorbins A-D, azaphilones from the fungus Phomopsis euphorbiae. Phytochemistry 69:2523–2526

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Grigoriadis NP, Lee JP, JAJr Porco (2005) Synthesis of the azaphilones using copper-mediated enantioselective oxidative dearomatization. J Am Chem Soc 127:9342–9343

    Article  PubMed  CAS  Google Scholar 

  • Zou XW, Sun BD, Chen XL, Liu XZ, Che YS (2009) Helotialins A—C, Anti-HIV metabolites from a Helotialean ascomycete. Chin J Nat Med 7:140–144

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wulf Schultze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osmanova, N., Schultze, W. & Ayoub, N. Azaphilones: a class of fungal metabolites with diverse biological activities. Phytochem Rev 9, 315–342 (2010). https://doi.org/10.1007/s11101-010-9171-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-010-9171-3

Keywords

Navigation