Skip to main content
Log in

Arsenic resistance in Pteris vittata L.: identification of a cytosolic triosephosphate isomerase based on cDNA expression cloning in Escherichia coli

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Arsenic hyperaccumulator Pteris vittata L. (Chinese brake fern) grows well in arsenic-contaminated media, with an extraordinary ability to tolerate high levels of arsenic. An expression cloning strategy was employed to identify cDNAs for the genes involved in arsenic resistance in P. vittata. Excised plasmids from the cDNA library of P. vittata fronds were introduced into Escherichia coli XL-1 Blue and plated on medium containing 4 mM of arsenate, a common form of arsenic in the environment. The deduced amino acid sequence of an arsenate-resistant clone, PV4-8, had cDNA highly homologous to plant cytosolic triosephosphate isomerases (cTPI). Cell-free extracts of PV4-8 had 3-fold higher level of triosephosphate isomerase (TPI) specific activities than that found in E. coli XL-1 Blue and had a 42 kD fusion protein immunoreactive to polyclonal antibodies raised against recombinant Solanum chacoense cTPI. The PV4-8 cDNA complemented a TPI-deficient E. coli mutant. PV4-8 expression improved arsenate resistance in E. coli WC3110, a strain deficient in arsenate reductase but not in AW3110 deficient for the whole ars operon. This is consistent with the hypothesis that PV4-8 TPI increased arsenate resistance in E. coli by directly or indirectly functioning as an arsenate reductase. When E. coli tpi gene was expressed in the same vector, bacterial arsenate resistance was not altered, indicating that arsenate tolerance was specific to P. vittata TPI. Paradoxically, P. vittata TPI activity was not more resistant to inhibition by arsenate in vitro than its bacterial counterpart suggesting that arsenate resistance of conventional TPI reaction was not the basis for the cellular arsenate resistance. P. vittata TPI activity was inhibited by incubation with reduced glutathione while bacterial TPI was unaffected. Consistent with cTPI’s role in arsenate reduction, bacterial cells expressing fern TPI had significantly greater per cent of cellular arsenic as arsenite compared to cells expressing E. coli TPI. Excised frond tissue infiltrated with arsenate reduced arsenate significantly more under light than dark. This research highlights a novel role for P. vittata cTPI in arsenate reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cTPI:

Cytosolic triosephosphate isomerase

DTT:

Dithiothereitol

EDTA:

Ethylene diamine tetraacetic acid

pTPI:

Plastidic triosephosphate isomerase

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

3-PGA:

3-Phosphoglycerate

TPI:

Triosephosphate isomerase

References

  • Abedin MJ, Feldmann J, Meharg AA (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128:1120–1128

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  CAS  Google Scholar 

  • Caille N, Swanwick S, Zhao FJ, McGrath SP (2004) Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilization. Environ Pollut 132:113–120

    Article  PubMed  CAS  Google Scholar 

  • Carlin A, Shi W, Dey S, Rosen BP (1995) The ars operon of Escherichia coli confers arsenical and antimonial resistance. J Bacteriol 177:981–986

    PubMed  CAS  Google Scholar 

  • Chen M, Ma LQ (1998) Comparison of four USEPA digestion methods for trace metal analysis using certified and Florida soils. J Environ Qual 27:1294–1300

    CAS  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotech 20:1140–1145

    Article  CAS  Google Scholar 

  • Dong R (2005) Molecular cloning and characterization of a phytochelatin synthase gene, PvPCS1, from Pteris vittata L. J Ind Micro Biotechnol 32:527–533

    Article  CAS  Google Scholar 

  • Dorion S, Parveen, Jeukens J, Matton DP, Rivoal J (2005a) Cloning and characterization of a cytosolic isoform of triosephosphate isomerase developmentally regulated in potato leaves. Plant Sci 168:183–194

    Article  CAS  Google Scholar 

  • Dorion, S, Parveen, Jeukens, J, Rivoal, J (2005b) Characterization and expression of potato triosephosphate isomerase isoforms. In: Van der Est A, Bruce D (eds) Photosynthesis: fundamental aspects to global perspectives. Int Soc Photosyn, ACG Publishing, pp 903–905

  • Duan G, Zhu Y, Tong Y, Cai C, Kneer R (2005) Characterization of arsenate reductase in the extract of roots and fronds of Chinese brake fern, an arsenic hyperaccumulator. Plant Physiol 138:461–469

    Article  PubMed  CAS  Google Scholar 

  • Ellis DR, Gumaelius L, Indriolo E, Pickering IJ, Banks JA, Salt DE (2006) A novel arsenate reductase from the arsenic hyperaccumulating fern Pteris vittata. Plant Physiol (in press)

  • Gregus Z, Nemeti B (2005) The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase works as an arsenate reductase in human red blood cells and rat liver cytosol. Toxicol Sci 85:859–869

    Article  PubMed  CAS  Google Scholar 

  • Gumaelius L, Lahner B, Salt DE, Banks JA (2004) Arsenic hyperaccumulation in gametophytes of Pteris vittata. A␣new model system for analysis of arsenic hyperaccumulation. Plant Physiol 136:3198–3208

    Article  PubMed  CAS  Google Scholar 

  • Harris TK, Cole RN, Comer FI, Mildvan AS (1998) Proton transfer in the mechanism of triosephosphate isomerase. Biochemistry 37:16828–16838

    Article  PubMed  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Bull 347:1–32

    Google Scholar 

  • Huang JW, Poynton CY, Kochian LV, Elless MP (2004) Phytofiltration of arsenic from drinking water using arsenic-hyperaccumulating ferns. Environ Sci Technol 38:3412–3417

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Iwabuchi M, Ogawa K (2003) The sugar-metabolic enzymes aldolase and triose-phosphate isomerase are targets of glutathionylation in Arabidopsis thaliana: detection using biotinylated glutathione. Plant Cell Physiol 44:655–660

    Article  PubMed  CAS  Google Scholar 

  • Kursula I, Wierenga RK (2003) Crystal structure of triosephosphate isomerase complexed with 2-phosphoglycolate at 0.83-A resolution. J Biol Chem 278:9544–9551

    Article  PubMed  CAS  Google Scholar 

  • Lee DA, Chen A, Schroeder JI (2003) ars1, an Arabidopsis mutant exhibiting increased tolerance to arsenate and increased phosphate uptake. Plant J 35:637–646

    Article  PubMed  CAS  Google Scholar 

  • Lombi E, Zhao F, Fuhrmann M, Ma LQ, McGrath SP (2002) Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytol 156:195–203

    Article  CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579–579

    Article  PubMed  CAS  Google Scholar 

  • Meharg AA (2003) Variation in arsenic accumulation – hyperaccumulation in ferns and their allies. New Phytol 157:25–31

    Article  CAS  Google Scholar 

  • Meng X, Korfiatis GP, Jing C, Christodoulatos C (2001) Redox transformations of arsenic and iron in water treatment sludge during aging and TCLP extraction. Environ Sci Technol 35:3476–3481

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay R, Shi J, Rosen BP (2000) Purification and characterization of Acr2p the Sccharomyces cerevisiae arsenate reductase. J Biol Chem 275:21149–21157

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nemeti B, Gregus Z (2005) Reduction of arsenate to arsenite by human erythrocyte lysate and rat liver cytosol – characterization of a glutathione- and NAD-dependent arsenate reduction linked to glycolysis. Toxicol Sci 85:847–858

    Article  PubMed  CAS  Google Scholar 

  • Ng JC, Want J, Shraim A (2003) A global health problem caused by arsenic from natural sources. Chemosphere 52:1353–1359

    Article  PubMed  CAS  Google Scholar 

  • Nickson R, McArthur J, Burgess W, Ahmed KM, Ravenscroft P, Rahman M (1998) Arsenic poisoning in Bangladesh groundwater. Nature 395:338–338

    Article  PubMed  CAS  Google Scholar 

  • Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944

    Article  PubMed  CAS  Google Scholar 

  • Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356

    Article  PubMed  CAS  Google Scholar 

  • Pickering IJ, Prince RC, George MJ, Smith RD, George GN, Salt DE (2000) Reduction and coordination of arsenic in Indian mustard. Plant Physiol 122:1171–1177

    Article  PubMed  CAS  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  PubMed  CAS  Google Scholar 

  • Poynton CY, Huang JW, Blaylock MJ, Kochian LV, Elless MP (2004) Mechanisms of arsenic hyperaccumulation in Pteris species: root As influx and translocation. Planta 219:1080–1088

    Article  PubMed  CAS  Google Scholar 

  • Raman SB, Rathinasabapathi B (2003) β-Alanine N-methyltransferase of Limonium latifolium. cDNA cloning and functional expression of a novel N-methyltransferase implicated in the synthesis of the osmoprotectant β-alanine betaine. Plant Physiol 132:1642–1651

    Article  PubMed  CAS  Google Scholar 

  • Rathinasabapathi B, Fouad WM, Sigua CA (2001) β-Alanine betaine synthesis in the Plumbaginaceae. Purification and characterization of a trifunctional, S-adenosyl-l-methionine-dependent N-methyltransferase from Limonium latifolium leaves. Plant Physiol 126:1241–1249

    Article  PubMed  CAS  Google Scholar 

  • Rosen BP (1996) Bacterial resistance to heavy metals and metalloids. JBIC 1:273–277

    Article  CAS  Google Scholar 

  • Rosen BP (2002) Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes. Comp Biochem Physiol A Mol Integr Physiol 133:689–693

    Google Scholar 

  • Salido AL, Hasty KL, Lim JM, Butcher DJ (2003) Phytoremediation of arsenic and lead in contaminated soil using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). Int J Phytorem 5:89–103

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Singh N, Ma LQ, Srivastava M, Rathinsabapathi B (2006) Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L, and Pteris ensiformis L. Plant Sci 170:274–282

    Article  CAS  Google Scholar 

  • Srivastava M, Ma LQ, Singh N, Singh S (2005) Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic. J Exp Bot 56:1335–1342

    Article  PubMed  CAS  Google Scholar 

  • Straus D, Gilbert W (1985) Chicken triosephosphate isomerase complements an Escherichia coli deficiency. Proc Natl Acad Sci USA 82:2014–2018

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (2000) PAUP: Phylogenetic analysis using parsimony and other methods (Software). Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClutalX-Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tu C, Ma LQ, Bondada B (2002) Arsenic accumulation in the hyperaccumulator Chinese brake and its utilization potential for phytoremediation. J Environ Qual 31:1671–1675

    Article  PubMed  CAS  Google Scholar 

  • Tu S, Ma LQ, Fayiga AO, Zillioux EJ (2004a) Phytoremediation of arsenic-contaminated groundwater by the arsenic hyperaccumulating fern Pteris vittata L. Int J Phytorem 6:35–47

    Article  CAS  Google Scholar 

  • Tu S, Ma LQ, MacDonald GE, Bondada B (2004b) Effects of arsenic species and phosphorus on arsenic absorption, arsenate reduction and thiol formation in excised parts of Pteris vittata L. Environ Exp Bot 51:121–131

    Article  CAS  Google Scholar 

  • Turner DH, Blanch ES, Gibbs M, Turner JF (1965) Triosephosphate isomerase of pea seeds. Plant Physiol 40:1146–1150

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Yamauchi H, Fan Sun G (2004) Chronic health effects in people exposed to arsenic via the drinking water: dose–response relationships in review. Toxicol Appl Pharmacol 198:243–252

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Cai Y, Tu C, Ma LQ (2002) Arsenic speciation and distribution in an arsenic hyperaccumulating fern. Sci Total Environ 300:167–177

    Article  PubMed  CAS  Google Scholar 

  • Zhao FJ, Wang JR, Barker JHA, Schat H, Bleeker PM, McGrath SP (2003) The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytol 159:403–410

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partly funded by a mini-grant to B.R and L.M. by the School of Natural Resources and Environment, University of Florida. We thank Dr. Barry P. Rosen (Wayne State University) for providing E. coli strains AW3110 and WC3110 and for useful discussions and an anonymous reviewer for constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bala Rathinasabapathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rathinasabapathi, B., Wu, S., Sundaram, S. et al. Arsenic resistance in Pteris vittata L.: identification of a cytosolic triosephosphate isomerase based on cDNA expression cloning in Escherichia coli . Plant Mol Biol 62, 845–857 (2006). https://doi.org/10.1007/s11103-006-9060-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-9060-8

Keywords

Navigation