Skip to main content
Log in

Hormonal regulation of leaf senescence through integration of developmental and stress signals

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Leaf senescence is a genetically controlled dismantling programme that enables plants to efficiently remobilise nutrients to new growing sinks. It involves substantial metabolic reprogramming whose timing is affected by developmental and environmental signals. Plant hormones have long been known to affect the timing of leaf senescence, but they also affect plant development and stress responses. It has therefore been difficult to tease apart how the different hormones regulate the onset and progression of leaf senescence, i.e., whether they directly affect leaf senescence or affect it indirectly by altering the developmental programme or by altering plants’ response to stress. Here we review research on hormonal regulation of leaf senescence and propose that hormones affect senescence through differential responses to developmental and environmental signals. We suggest that leaf senescence strictly depends on developmental changes, after which senescence can be induced, depending on the type of hormonal and environmental cues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abeles F (1986) Manipulation of plant growth by ethylene. Manip Ethyl Responses Hortic XXII IHC 201:11–20

    Google Scholar 

  • Abeles FB, Dunn LJ, Morgens P, Callahan A, Dinterman RE, Schmidt J (1988) Induction of 33-Kd and 60-Kd Peroxidases during Ethylene-Induced Senescence of Cucumber Cotyledons. Plant Physiol 87:609–615

    Article  PubMed  CAS  Google Scholar 

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van der Straeten D, Peng JR, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    Article  PubMed  CAS  Google Scholar 

  • Adie BAT, Perez–Perez J, Perez–Perez MM, Godoy M, Sanchez-Serrano JJ, Schmelz EA, Solano R (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19:1665–1681

    Article  PubMed  CAS  Google Scholar 

  • Ali Q, Athar HUR, Ashraf M (2008) Modulation of growth, photosynthetic capacity and water relations in salt stressed wheat plants by exogenously applied 24-epibrassinolide. Plant Growth Regul 56:107–116

    Article  CAS  Google Scholar 

  • Argueso CT, Raines T, Kieber JJ (2010) Cytokinin signalling and transcriptional networks. Curr Opin Plant Biol 13:533–539

    Article  PubMed  CAS  Google Scholar 

  • Back A, Richmond AE (2006) Interrelations between gibberellic acid, cytokinins and abscisic acid in retarding leaf senescence. Physiol Plant 24:76–79

    Article  Google Scholar 

  • Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8

    Article  PubMed  CAS  Google Scholar 

  • Balazadeh S, Siddiqui H, Allu AD, Matallana-Ramirez LP, Caldana C, Mehrnia M, Zanor MI, Köhler B, Mueller-Roeber B (2010) A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. Plant J 62:250–264

    Article  PubMed  CAS  Google Scholar 

  • Becker W, Apel K (1993) Differences in gene-expression between natural and artificially induced leaf senescence. Planta 189:74–79

    Article  CAS  Google Scholar 

  • Bejatal S, Borochov A (1994) Age-related-changes in biochemical and physical-properties of carnation petal plasma-membranes. J Plant Physiol 143:195–199

    Article  CAS  Google Scholar 

  • Besseau S, Li J, Palva ET (2012) WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J Exp Bot 63:2667–2679

    Google Scholar 

  • Birkett MA, Campbell CAM, Chamberlain K, Guerrieri E, Hick AJ, Martin JL, Matthes M, Napier JA, Pettersson J, Pickett JA, Poppy GM, Pow EM, Pye BJ, Smart LE, Wadhams GH, Wadhams LJ, Woodcock CM (2000) New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc Natl Acad Sci USA 97:9329–9334

    Article  PubMed  CAS  Google Scholar 

  • Borochov A, Halevy AH (1978) Microviscosity of plasmalemmas in rose petals as affected by age and environmental factors. Plant Physiol 61:812–815

    Article  PubMed  CAS  Google Scholar 

  • Borras L, Maddonni GA, Otegui ME (2003) Leaf senescence in maize hybrids: plant population, row spacing and kernel set effects. Field Crops Res 82:13–26

    Article  Google Scholar 

  • Bowler C, Vanmontagu M, Inze D (1992) Superoxide-dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Kiddle S, Kim YS, Penfold CA, Jenkins D, Zhang C, Morris K, Jenner C, Jackson S, Thomas B, Tabrett A, Legaie R, Moore JD, Wild DL, Ott S, Rand D, Beynon J, Denby K, Mead A, Buchanan-Wollaston V (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23:873–894

    Article  PubMed  CAS  Google Scholar 

  • Bruinsma M, Van Dam NM, Van Loon JJA, Dicke M (2007) Jasmonic acid-induced changes in Brassica oleracea affect oviposition preference of two specialist herbivores. J Chem Ecol 33:655–668

    Article  PubMed  CAS  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585

    Article  PubMed  CAS  Google Scholar 

  • Çanakci S, Dursum B (2012) The effect of pre-application of salicylic acid on some physiological and biochemical characteristics of tomato seedling (Lycopersicon esculentum L) growing in cadmium containing media. Afr J Biotechnol 11:3173–3178

    Google Scholar 

  • Cao WH, Liu J, He XJ, Mu RL, Zhou HL, Chen SY, Zhang JS (2007) Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol 143:707–719

    Article  PubMed  CAS  Google Scholar 

  • Castillo MC, Leon J (2008) Expression of the beta-oxidation gene 3-ketoacyl-CoA thiolase 2(KAT2) is required for the timely onset of natural and dark-induced leaf senescence in Arabidopsis. J Exp Bot 59:2171–2179

    Article  PubMed  CAS  Google Scholar 

  • Castillo MC, Martínez C, Buchala A, Métraux JP, León J (2004) Gene-specific involvement of β-oxidation in wound-activated responses in Arabidopsis. Plant Physiol 135:85–94

    Article  CAS  Google Scholar 

  • Chen GH, Liu CP, Chen SC, Wang LC (2011) Role of ARABIDOPSIS A-FIFTEEN in regulating leaf senescence involves response to reactive oxygen species and is dependent on ETHYLENE INSENSITIVE2. J Exp Bot 63:275–292

    Article  PubMed  CAS  Google Scholar 

  • Choudhury S, Panda SK (2004) Role of salicylic acid in regulating cadmium induced oxidative stress in Oryza sativa L. roots. Bulg J Plant Physiol 30:95–110

    CAS  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    Article  PubMed  CAS  Google Scholar 

  • Cottrell TE, Wood BW, Ni X (2010) Application of plant growth regulators mitigates chlorotic foliar injury by the black pecan aphid (Hemiptera: Aphididae). Pest Manag Sci 66:1236–1242

    Article  PubMed  CAS  Google Scholar 

  • Craftsbrandner SJ, Below FE, Harper JE, Hageman RH (1984) Effects of Pod Removal on Metabolism and Senescence of Nodulating and Nonnodulating Soybean Isolines.2. Enzymes and Chlorophyll. Plant Physiol 75:318–322

    Article  CAS  Google Scholar 

  • Dai N, Schaffer A, Petreikov M, Shahak Y, Giller Y, Ratner K, Levine A, Granot D (1999) Overexpression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence. Plant Cell 11:1253–1266

    PubMed  CAS  Google Scholar 

  • Dasgupta K, Ganesan S, Manivasagam S, Ayre BG (2011) A cytochrome P450 monooxygenase commonly used for negative selection in transgenic plants causes growth anomalies by disrupting brassinosteroid signaling. BMC Plant Biol 11:67

    Article  PubMed  CAS  Google Scholar 

  • Davies PJ, Gan S (2012) Towards an integrated view of monocarpic plant senescence. Russ J Plant Physiol 59:467–478

    Article  CAS  Google Scholar 

  • De Vleesschauwer D, Yang Y, Cruz CV, Hofte M (2010) Abscisic acid-induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling. Plant Physiol 152:2036–2052

    Article  PubMed  CAS  Google Scholar 

  • De Vleesschauwer D, Van Buyten E, Satoh K, Balidion J, Mauleon R, Choi IR, Vera-Cruz C, Kikuchi S, Hofte M (2012) Brassinosteroids antagonize gibberellin- and salicylate-mediated root immunity in rice. Plant Physiol 158:1833–1846

    Google Scholar 

  • Delatorre CA, Cohen Y, Liu L, Peleg Z, Blumwald E (2012) The regulation of the SARK promoter activity by hormones and environmental signals. Plant Sci 193:39–47

    Article  PubMed  CAS  Google Scholar 

  • Depuydt S, Hardtke Christian S (2011) Hormone signalling crosstalk in plant growth regulation. Curr Biol 21:R365–R373

    Article  PubMed  CAS  Google Scholar 

  • Dicke M, Gols R, Ludeking D, Posthumus MA (1999) Jasmonic acid and herbivory differentially induce carnivore-attracting plant volatiles in lima bean plants. J Chem Ecol 25:1907–1922

    Article  CAS  Google Scholar 

  • Ding W, Zhao Y, Ding WM, Zhao YJ (1995) Effect of epi-BR on activity of peroxidase and soluble protein content of cucumber cotyledons. Acta Phytophysiol Sinica 21:259–264

    CAS  Google Scholar 

  • Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW (2005) AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132:4563–4574

    Article  PubMed  CAS  Google Scholar 

  • Eraslan F, Inal A, Gunes A, Alpaslan M (2007) Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Sci Hortic 113:120–128

    Article  CAS  Google Scholar 

  • Fracheboud Y, Luquez V, Bjorken L, Sjodin A, Tuominen H, Jansson S (2009) The control of autumn senescence in European aspen. Plant Physiol 149:1982–1991

    Article  PubMed  CAS  Google Scholar 

  • Franco RE, Han SS (1997) Respiratory changes associated with growth-regulator-delayed leaf yellowing in Easter lily. J Am Soc Hort Sci 122:117–121

    Google Scholar 

  • Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988

    Article  PubMed  CAS  Google Scholar 

  • Grbic V, Bleecker AB (1995) Ethylene regulates the timing of leaf senescence in Arabidopsis. Plant J 8:595–602

    Article  CAS  Google Scholar 

  • Guiboileau A, Sormani R, Meyer C, Masclaux-Daubresse C (2010) Senescence and death of plant organs: nutrient recycling and developmental regulation. C R Biol 333:382–391

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Gan S (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 46:601–612

    Article  PubMed  CAS  Google Scholar 

  • Guo YF, Gan SS (2012) Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence-promoting hormonal, pathological and environmental stress treatments. Plant, Cell Environ 35:644–655

    Article  CAS  Google Scholar 

  • Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2012) Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci 17:172–179

    Article  PubMed  CAS  Google Scholar 

  • Hasan SA, Hayat S, Ahmad A (2011) Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. Chemosphere 84:1446–1451

    Article  PubMed  CAS  Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25

    Article  CAS  Google Scholar 

  • He J, Xu R, Zhao Y, He JJ, Xu RJ, Zhao YJ (1996) Enhancement of senescence by epibrassinolide in leaves of mung bean seedling. Acta Phytophysiol Sinica 22:58–62

    CAS  Google Scholar 

  • He Y, Tang W, Swain JD, Green AL, Jack TP, Gan S (2001) Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiol 126:707–716

    Article  PubMed  CAS  Google Scholar 

  • He YH, Fukushige H, Hildebrand DF, Gan SS (2002) Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol 128:876–884

    Article  PubMed  CAS  Google Scholar 

  • He P, Osaki M, Takebe M, Shinano T, Wasaki J (2005) Endogenous hormones and expression of senescence-related genes in different senescent types of maize. J Exp Bot 56:1117–1128

    Article  PubMed  CAS  Google Scholar 

  • He K, Gou X, Yuan T, Lin H, Asami T, Yoshida S, Russell SD, Li J (2007) BAK1 and BKK1 regulate brassinosteroid-dependent growth and brassinosteroid-independent cell-death pathways. Curr Biol 17:1109–1115

    Article  PubMed  CAS  Google Scholar 

  • Hensel LL, Grbic V, Baumgarten DA, Bleecker AB (1993) Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidoposis. Plant Cell 5:553–564

    PubMed  CAS  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Husar S, Berthiller F, Fujioka S, Rozhon W, Khan M, Kalaivanan F, Elias L, Higgins GS, Li Y, Schuhmacher R, Krska R, Seto H, Vaistij FE, Bowles D, Poppenberger B (2011) Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in Arabidopsis thaliana. BMC Plant Biol 11:51

    Article  PubMed  CAS  Google Scholar 

  • Itzhaki H, Borochov A, Mayak S (1990) Age-related-changes in petal membranes from attached and detached rose flowers. Plant Physiol 94:1233–1236

    Article  PubMed  CAS  Google Scholar 

  • Jing HC, Sturre MJG, Hille J, Dijkwel PP (2002) Arabidopsis onset of leaf death mutants identify a regulatory pathway controlling leaf senescence. Plant J 32:51–63

    Article  PubMed  CAS  Google Scholar 

  • Jing HC, Schippers JH, Hille J, Dijkwel PP (2005) Ethylene-induced leaf senescence depends on age-related changes and OLD genes in Arabidopsis. J Exp Bot 56:2915–2923

    Article  PubMed  CAS  Google Scholar 

  • Jung C, Lyou SH, Yeu S, Kim MA, Rhee S, Kim M, Lee JS, Choi YD, Cheong JJ (2007) Microarray-based screening of jasmonate-responsive genes in Arabidopsis thaliana. Plant Cell Rep 26:1053–1063

    Article  PubMed  CAS  Google Scholar 

  • Kang J-H, Wang L, Giri A, Baldwin IT (2006) Silencing threonine deaminase and JAR4 in Nicotiana attenuata impairs jasmonic acid-isoleucine-mediated defenses against Manduca sexta. Plant Cell 18:3303–3320

    Article  PubMed  CAS  Google Scholar 

  • Kant S, Bi YM, Zhu T, Rothstein SJ (2009) SAUR39, a small auxin-up RNA gene, acts as a negative regulator of auxin synthesis and transport in rice. Plant Physiol 151:691–701

    Article  PubMed  CAS  Google Scholar 

  • Kato Y, Murakami S, Yamamoto Y, Chatani H, Kondo Y, Nakano T, Yokota A, Sato F (2004) The DNA-binding protease, CND41, and the degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase in senescent leaves of tobacco. Planta 220:97–104

    Article  PubMed  CAS  Google Scholar 

  • Kelly MO, Davies PJ (1986) Genetic and photoperiodic control of the relative rates of reproductive and vegetative development in peas. Ann Bot 58:13–21

    Google Scholar 

  • Kelly MO, Davies PJ (1988) Photoperiodic and genetic-control of carbon partitioning in peas and its relationship to apical senescence. Plant Physiol 86:978–982

    Article  PubMed  CAS  Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72:427–441

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Ryu H, Hong SH, Woo HR, Lim PO, Lee IC, Sheen J, Nam HG, Hwang I (2006) Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proc Natl Acad Sci USA 103:814–819

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Woo HR, Kim J, Lim PO, Lee IC, Choi SH, Hwang D, Nam HG (2009) Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323:1053

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Chung KM, Woo HR (2011a) Three positive regulators of leaf senescence in Arabidopsis, ORE1, ORE3 and ORE9, play roles in crosstalk among multiple hormone-mediated senescence pathways. Genes Genomics 33:373–381

    Article  CAS  Google Scholar 

  • Kim JI, Murphy AS, Baek D, Lee SW, Yun DJ, Bressan RA, Narasimhan ML (2011b) YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana. J Exp Bot 62:3981–3992

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita N, Berr A, Belin C, Chappuis R, Nishizawa NK, Lopez-Molina L (2010) Identification of growth insensitive to ABA3 (gia3), a recessive mutation affecting ABA Signaling for the control of early post-germination growth in Arabidopsis thaliana. Plant Cell Physiol 51:239–251

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Alonso-Blanco C, Peeters AJM, Soppe W (1998) Genetic control of flowering time in arabidopsis. Annu Rev Plant Physiol Plant Mol Biol 49:345–370

    Article  PubMed  CAS  Google Scholar 

  • Krishna P (2003) Brassinosteroid-mediated stress responses. J Plant Growth Regul 22:289–297

    Article  PubMed  CAS  Google Scholar 

  • Lara MEB, Garcia MCG, Fatima T, Ehness R, Lee TK, Proels R, Tanner W, Roitsch T (2004) Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell 16:1276–1287

    Article  Google Scholar 

  • Lee SC, Luan S (2012) ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant, Cell Environ 35:53–60

    Article  CAS  Google Scholar 

  • Lee IC, Hong SW, Whang SS, Lim PO, Nam HG, Koo JC (2011) Age-dependent action of an ABA-inducible receptor kinase, RPK1, as a positive regulator of senescence in Arabidopsis leaves. Plant Cell Physiol 52:651–662

    Article  PubMed  CAS  Google Scholar 

  • Li J, Yu K, Wei J, Ma Q, Wang B, Yu D (2010) Gibberellin retards chlorophyll degradation during senescence of Paris polyphylla. Biol Plant 54:395–399

    Article  CAS  Google Scholar 

  • Lim PO, Kim HJ, Gil Nam H (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  PubMed  CAS  Google Scholar 

  • Lim PO, Lee IC, Kim J, Kim HJ, Ryu JS, Woo HR, Nam HG (2010) Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity. J Exp Bot 61:1419–1430

    Article  PubMed  CAS  Google Scholar 

  • Lumba S, Tsuchiya Y, Delmas F, Hezky J, Provart NJ, Shi Lu Q, McCourt P, Gazzarrini S (2012) The embryonic leaf identity gene FUSCA3 regulates vegetative phase transitions by negatively modulating ethylene-regulated gene expression in Arabidopsis. BMC Biol 10:8

    Article  PubMed  CAS  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant–pathogen interactions. Curr Opin Plant Biol 8:409–414

    Article  PubMed  CAS  Google Scholar 

  • McCabe MS, Garratt LC, Schepers F, Jordi WJRM, Stoopen GM, Davelaar E, van Rhijn JHA, Power JB, Davey MR (2001) Effects of PSAG12-IPT gene expression on development and senescence in transgenic lettuce. Plant Physiol 127:505–516

    Article  PubMed  CAS  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    Article  PubMed  CAS  Google Scholar 

  • Merewitz EB, Gianfagna T, Huang BR (2010) Effects of SAG12-ipt and HSP18.2-ipt expression on cytokinin production, root growth, and leaf senescence in creeping bentgrass exposed to drought stress. J Am Soc Hort Sci 135:230–239

    Google Scholar 

  • Merewitz EB, Gianfagna T, Huang B (2011) Protein accumulation in leaves and roots associated with improved drought tolerance in creeping bentgrass expressing an ipt gene for cytokinin synthesis. J Exp Bot 62:5311–5333

    Article  PubMed  CAS  Google Scholar 

  • Merewitz EB, Du H, Yu W, Liu Y, Gianfagna T, Huang B (2012) Elevated cytokinin content in ipt transgenic creeping bentgrass promotes drought tolerance through regulating metabolite accumulation. J Exp Bot 63:1315–1328

    Article  PubMed  CAS  Google Scholar 

  • Mewis I, Appel HM, Hom A, Raina R, Schultz JC (2005) Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiol 138:1149–1162

    Article  PubMed  CAS  Google Scholar 

  • Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55:853–867

    PubMed  CAS  Google Scholar 

  • Miceli F, Craftsbrandner SJ, Egli DB (1995) Physical restriction of pod growth alters development of soybean plants. Crop Sci 35:1080–1085

    Article  Google Scholar 

  • Morris K, Mackerness SAH, Page T, John CF, Murphy AM, Carr JP, Buchanan-Wollaston V (2000) Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J 23:677–685

    Article  PubMed  CAS  Google Scholar 

  • Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S (2003) Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J 33:887–898

    Article  PubMed  CAS  Google Scholar 

  • Noh YS, Amasino RM (1999) Identification of a promoter region responsible for the senescence-specific expression of SAG12. Plant Mol Biol 41:181–194

    Article  PubMed  CAS  Google Scholar 

  • Nooden LD (1988) The phenomena of senescence and aging. In: Nooden LD, Leopold AC (eds) Senescence and aging in plants. Academic Press, San Diego

  • Ogawa T, Pan L, Kawai-Yamada M, Yu LH, Yamamura S, Koyama T, Kitajima S, Ohme-Takagi M, Sato F, Uchimiya H (2005) Functional analysis of Arabidopsis ethylene-responsive element binding protein conferring resistance to Bax and abiotic stress-induced plant cell death. Plant Physiol 138:1436–1445

    Article  PubMed  CAS  Google Scholar 

  • Oh SA, Park JH, Lee GI, Paek KH, Park SK, Nam HG (1997) Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. Plant J 12:527–535

    Article  PubMed  CAS  Google Scholar 

  • Ori N, Juarez MT, Jackson D, Yamaguchi J, Banowetz GM, Hake S (1999) Leaf senescence is delayed in tobacco plants expressing the maize homeobox gene knotted1 under the control of a senescence-activated promoter. Plant Cell 11:1073–1080

    PubMed  CAS  Google Scholar 

  • Pandey S, Gupta K, Mukherjee A (2007) Impact of cadmium and lead on Catharanthus roseus-A phytoremediation study. J Environ Biol 28:655–662

    PubMed  CAS  Google Scholar 

  • Park JH, Halitschke R, Kim HB, Baldwin IT, Feldmann KA, Feyereisen R (2002) A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J 31:1–12

    Article  PubMed  Google Scholar 

  • Perilli S, Moubayidin L, Sabatini S (2010) The molecular basis of cytokinin function. Curr Opin Plant Biol 13:21–26

    Article  PubMed  CAS  Google Scholar 

  • Philosoph-Hadas S, Hadas E, Aharoni N (1993) Characterization and use in elisa of a new monoclonal-antibody for quantitation of abscisic-acid in senescing rice leaves. Plant Growth Regul 12:71–78

    Google Scholar 

  • Qin F, Kodaira KS, Maruyama K, Mizoi J, Tran LSP, Fujita Y, Morimoto K, Shinozaki K, Yamaguchi-Shinozaki K (2011) SPINDLY, a Negative Regulator of Gibberellic Acid Signaling, Is Involved in the Plant Abiotic Stress Response. Plant Physiol 157:1900–1913

    Article  PubMed  CAS  Google Scholar 

  • Quirino BF, Normanly J, Amasino RM (1999) Diverse range of gene activity during Arabidopsis thaliana leaf senescence includes pathogen-independent induction of defense-related genes. Plant Mol Biol 40:267–278

    Article  PubMed  CAS  Google Scholar 

  • Rao SSR, Vidya Vardhini B, Sujatha E, Anuradha S (2002) Brassinosteroids: a new class of phytohormones. Curr Sci 82:1239–1245

    Google Scholar 

  • Rivero RM, Gimeno J, Van Deynze A, Walia H, Blumwald E (2010) Enhanced Cytokinin Synthesis in Tobacco Plants Expressing P(SARK):IPT Prevents the Degradation of Photosynthetic Protein Complexes During Drought. Plant Cell Physiol 51:1929–1941

    Article  PubMed  CAS  Google Scholar 

  • Robatzek S, Somssich IE (2001) A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence-and defence-related processes. Plant J 28:123–133

    Article  PubMed  CAS  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JDG (2011) Hormone crosstalk in plant disease and defense: more than just JASMONATE-SALICYLATE Antagonism. In: NK VanAlfen, G Bruening, JE Leach (eds) Annual Review of Phytopathology 49:317–343

  • Rodrigues C, Vandenberghe LPD, de Oliveira J, Soccol CR (2011) New perspectives of gibberellic acid production: a review. Crit Rev Biotechnol 32:263–273

    Google Scholar 

  • Saglam-Cag S (2007) The effect of epibrassinolide on senescence in wheat leaves. Biotechnol Biotechnol Equip 21:63–65

    CAS  Google Scholar 

  • Schenk PM, Kazan K, Rusu AG, Manners JM, Maclean DJ (2005) The SEN1 gene of Arabidopsis is regulated by signals that link plant defence responses and senescence. Plant Physiol Biochem 43:997–1005

    Article  PubMed  CAS  Google Scholar 

  • Schippers JHM, Jing HC, Hille J, Dijkwel PP (2007) Developmental and hormonal control of leaf senescence. In: Gan S (ed) Senescence Processes in Plants. Blackwell, Oxford, pp 145–170

    Chapter  Google Scholar 

  • Schippers JHM, Nunes-Nesi A, Apetrei R, Hille J, Fernie AR, Dijkwel PP (2008) The Arabidopsis onset of leaf death5 Mutation of quinolinate synthase affects nicotinamide adenine dinucleotide biosynthesis and causes early ageing. Plant Cell 20:2909–2925

    Article  PubMed  CAS  Google Scholar 

  • Schmulling T, Werner T, Riefler M, Krupkova E, Manns IBY (2003) Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J Plant Res 116:241–252

    Article  PubMed  CAS  Google Scholar 

  • Schommer C, Palatnik JF, Aggarwal P, Chetelat A, Cubas P, Farmer EE, Nath U, Weigel D (2008) Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 6:e230

    Article  PubMed  CAS  Google Scholar 

  • Seltmann MA, Stingl NE, Lautenschlaeger JK, Krischke M, Mueller MJ, Berger S (2010) Differential Impact of lipoxygenase 2 and jasmonates on natural and stress-induced senescence in Arabidopsis. Plant Physiol 152:1940–1950

    Article  PubMed  CAS  Google Scholar 

  • Shakirova FM, Panov VE, Clark PF (2007) New records of the Chinese mitten crab, Eriocheir sinensis H. Milne Edwards, 1853, from the Volga River, Russia. Aquat Invasions 2:169–173

    Article  Google Scholar 

  • Shan X, Wang J, Chua L, Jiang D, Peng W, Xie D (2011) The role of Arabidopsis Rubisco activase in jasmonate-induced leaf senescence. Plant Physiol 155:751–764

    Article  PubMed  CAS  Google Scholar 

  • Sharabi-Schwager M, Lers A, Samach A, Guy CL, Porat R (2010) Overexpression of the CBF2 transcriptional activator in Arabidopsis delays leaf senescence and extends plant longevity. J Exp Bot 61:261–273

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S (2012) Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell 24:2578–2595

    Article  PubMed  CAS  Google Scholar 

  • Skirycz A, Claeys H, De Bodt S, Oikawa A, Shinoda S, Andriankaja M, Maleux K, Eloy NB, Coppens F, Yoo SD, Saito K, Inze D (2011) Pause-and-stop: the effects of osmotic stress on cell proliferation during early leaf development in Arabidopsis and a role for ethylene signaling in cell cycle arrest. Plant Cell 23:1876–1888

    Article  PubMed  CAS  Google Scholar 

  • Sklensky DE, Davies PJ (2011) Resource partitioning to male and female flowers of Spinacia oleracea L. in relation to whole-plant monocarpic senescence. J Exp Bot 62:4323–4336

    Article  PubMed  CAS  Google Scholar 

  • Stintzi A, Weber H, Reymond P, Farmer EE (2001) Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc Natl Acad Sci USA 98:12837

    Article  PubMed  CAS  Google Scholar 

  • Swartzberg D, Hanael R, Granot D (2011) Relationship between hexokinase and cytokinin in the regulation of leaf senescence and seed germination. Plant Biol 13:439–444

    Article  PubMed  CAS  Google Scholar 

  • Szekeres M, Nemeth K, KonczKalman Z, Mathur J, Kauschmann A, Altmann T, Redei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in arabidopsis. Cell 85:171–182

    Article  PubMed  CAS  Google Scholar 

  • Ueda J, Kato J, Yamane H, Takahashi N (1981) Inhibitory effect of methyl jasmonate and its related compounds on kinetin-induced retardation of oat leaf senescence. Physiol Plant 52:305–309

    Article  CAS  Google Scholar 

  • Ülker B, Shahid Mukhtar M, Somssich IE (2007) The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways. Planta 226:125–137

    Article  PubMed  CAS  Google Scholar 

  • van der Graaff E, Schwacke R, Schneider A, Desimone M, Flugge UI, Kunze R (2006) Transcription analysis of arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol 141:776–792

    Article  PubMed  CAS  Google Scholar 

  • Van Zhong G, Burns JK (2003) Profiling ethylene-regulated gene expression in Arabidopsis thaliana by microarray analysis. Plant Mol Biol 53:117–131

    Article  PubMed  CAS  Google Scholar 

  • Vlot AC, Dempsey DMA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    Article  PubMed  CAS  Google Scholar 

  • von Saint Paul V, Zhang W, Kanawati B, Geist B, Faus-Kessler T, Schmitt-Kopplin P, Schaffner AR (2011) The Arabidopsis glucosyltransferase UGT76B1 conjugates isoleucic acid and modulates plant defense and senescence. Plant Cell 23:4124–4145

    Article  CAS  Google Scholar 

  • Wang KLC, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14:S131–S151

    PubMed  CAS  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    Article  PubMed  CAS  Google Scholar 

  • Weaver LM, Gan SS, Quirino B, Amasino RM (1998) A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Mol Biol 37:455–469

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550

    Article  PubMed  CAS  Google Scholar 

  • Wintermans J, De Mots A (1965) Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochimica et Biophysica Acta (BBA)-Biophysics including Photosynthesis 109:448–453

    Article  CAS  Google Scholar 

  • Wittenbach VA (1982) Effect of pod removal on leaf senescence in soybeans. Plant Physiol 70:1544–1548

    Article  PubMed  CAS  Google Scholar 

  • Woltering EJ, Vandoorn WG (1988) Role of ethylene in senescence of petals—morphological and taxonomical relationships. J Exp Bot 39:1605–1616

    Article  CAS  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

    Article  PubMed  CAS  Google Scholar 

  • Xiao S, Chye ML (2011) Overexpression of Arabidopsis ACBP3 enhances NPR1-dependent plant resistance to Pseudomonas syringe pv tomato DC3000. Plant Physiol 156:2069–2081

    Article  PubMed  CAS  Google Scholar 

  • Xiao S, Dai L, Liu F, Wang Z, Peng W, Xie D (2004) COS1: an Arabidopsis coronatine insensitive1 suppressor essential for regulation of jasmonate-mediated plant defense and senescence. Plant Cell 16:1132–1142

    Article  PubMed  CAS  Google Scholar 

  • Xiao S, Gao W, Chen QF, Chan SW, Zheng SX, Ma J, Wang M, Welti R, Chye ML (2010) Overexpression of Arabidopsis Acyl-CoA binding protein ACBP3 promotes starvation-induced and age-dependent leaf senescence. Plant Cell 22:1463–1482

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Li Y, Wang Y, Liu H, Lei L, Yang H, Liu G, Ren D (2008) Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J Biol Chem 283:26996–27006

    Article  PubMed  CAS  Google Scholar 

  • Yan J, Zhang C, Gu M, Bai Z, Zhang W, Qi T, Cheng Z, Peng W, Luo H, Nan F, Wang Z, Xie D (2009) The Arabidopsis CORONATINE INSENSITIVE1 protein is a Jasmonate receptor. Plant Cell 21:2220–2236

    Article  PubMed  CAS  Google Scholar 

  • Yang JC, Zhang JH, Wang ZQ, Zhu QS, Liu LJ (2002) Abscisic acid and cytokinins in the root exudates and leaves and their relationship to senescence and remobilization of carbon reserves in rice subjected to water stress during grain filling. Planta 215:645–652

    Article  PubMed  CAS  Google Scholar 

  • Yang SD, Seo PJ, Yoon HK, Park CM (2011) The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. Plant Cell 23:2155–2168

    Article  PubMed  CAS  Google Scholar 

  • Yin YH, Wang ZY, Mora-Garcia S, Li JM, Yoshida S, Asami T, Chory J (2002) BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109:181–191

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu K (2009) Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21:2914–2927

    Article  PubMed  CAS  Google Scholar 

  • Yu K, Wei J, Ma Q, Yu D, Li J (2009a) Senescence of aerial parts is impeded by exogenous gibberellic acid in herbaceous perennial Paris polyphylla. J Plant Physiol 166:819–830

    Article  PubMed  CAS  Google Scholar 

  • Yu K, Wang Y, Wei J, Ma Q, Yu D, Li J (2009b) Improving rhizome yield and quality of Paris polyphylla through gibberellic acid-induced retardation of senescence of aerial parts. Plant Signal Behav 4:413

    Article  PubMed  CAS  Google Scholar 

  • Zentgraf U (2007) Oxidative stress and leaf senescence. In: Gan S (ed) Annual plant reviews: senescence processes in plants. Blackwell Publishing Ltd, Oxford, UK, p 26

    Google Scholar 

  • Zhang K, Gan SS (2012) An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves. Plant Physiol 158:961–969

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Liang C, Xu Y, Gianfagna T, Huang B (2010) Effects of ipt gene expression on leaf senescence induced by nitrogen or phosphorus deficiency in creeping bentgrass. J Am Soc Hort Sci 135:108–115

    CAS  Google Scholar 

  • Zhang K, Xia X, Zhang Y, Gan SS (2012) An ABA-regulated and golgi-localized protein phosphatase controls water loss during leaf senescence in Arabidopsis. Plant J 69:667–678

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul P. Dijkwel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jibran, R., A. Hunter, D. & P. Dijkwel, P. Hormonal regulation of leaf senescence through integration of developmental and stress signals. Plant Mol Biol 82, 547–561 (2013). https://doi.org/10.1007/s11103-013-0043-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-013-0043-2

Keywords

Navigation