Skip to main content
Log in

Changes of Ni biogeochemistry in the rhizosphere of the hyperaccumulator Thlaspi goesingense

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Processes in the rhizosphere of metal hyperaccumulator species are largely unknown. We investigated root-induced changes of Ni biogeochemistry in the rhizosphere of Thlaspi goesingense Hálácsy in a rhizobox experiment and in related soil chemical and Ni uptake studies. In the rhizobox, a root monolayer was separated from rhizosphere soil by a nylon membrane. Rhizosphere soil was then sliced into 0.5 mm layers and analyzed for changes in soluble (water-extractable, Ni S ) and labile (1 M NH 4NO 3-extractable, Ni L ) Ni pools. Ni L in the rhizosphere was depleted due to excessive uptake in T. goesingense. Ni S in the rhizosphere increased in contrast to expectations based on the experimental Ni desorption isotherm. Mathematical simulations following the Tinker–Nye–Barber approach overestimated the depletion of the Ni L and predicted a decrease of Ni S in the rhizosphere. In a hydroponic experiment, we demonstrated that T. goesingense takes up Ni 2+ but excludes metal–organic complexes. The model output was then improved in later versions considering this finding. A sensitivity analysis identified I max and K m , derived from the Michaelis–Menten uptake kinetics experiment to be the most sensitive of the model parameters. The model was also sensitive to the accuracy of the estimate of the initial Ni concentration (C Si ) in soil solution. The formation of Ni–DOM complexes in solution could not explain the poor fit as in contrast to previous field experiments, the correlation between soluble Ni and dissolved organic carbon (DOC) was weak. Ion competition of Ni with Ca and Mg could be ruled out as explanation of enhanced Ni solubility in the rhizosphere as the molar ratio of Ni/(Ca + Mg) in solution was not affected. However, a decreased Vanselov coefficient Kv near the root plane indicated (an apparent) lower selectivity of the exchange complex for Ni, possibly due to adsorption of oxalate exuded by T. goesingense roots or associated rhizosphere microbes. This conclusion is supported by field data, showing enhanced oxalate concentrations in the rhizosphere of T. goesingense on the same experimental soil. The implications for phytoextraction and bio-available contaminant stripping (BCS) as well as for future modeling and experimental work are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C L :

simulated concentration of labile (adsorbed + soluble) Ni in soil

C S :

simulated Ni concentration in soil solution

DOC:

dissolved organic carbon

Ni L :

measured labile (adsorbed+soluble) Ni in soil

Ni S :

measured water-extractable Ni in soil

References

  • Allison J D, Brown D S, Novo-Gradac K J (1991) MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems. Version 3.0 user’s manual. EPA/600/3-91/021. USEPA, Athens.

  • H Al-Najar R Schulz V Römheld (2003) ArticleTitlePlant availability of thallium in the rhizosphere of hyperaccumulator plants: a key factor for assessment of phytoextraction Plant Soil 249 97–105

    Google Scholar 

  • S Altfelder T Streck M A Maraqa T C Voice (2001) ArticleTitleNonequilibrium sorption of dimethylphthalate–compatibility of batch and column techniques Soil Sci. Soc. Am. J. 65 102–111 Occurrence Handle1:CAS:528:DC%2BD3MXhvFSltLo%3D

    CAS  Google Scholar 

  • A G L Assunção H Schat M G M Aarts (2003) ArticleTitleThlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants New Phytol. 159 351–360

    Google Scholar 

  • A J M Baker R R Brooks (1989) ArticleTitleTerrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry Biorecovery 1 81–126 Occurrence Handle1:CAS:528:DyaL1MXltlSltrc%3D

    CAS  Google Scholar 

  • S A Barber (1995) Soil Nutrient Bioavailability: A Mechanistic Approach John Wiley & Sons Inc. New York

    Google Scholar 

  • M P Bernal S P McGrath A J Miller A J M Baker (1994) ArticleTitleComparison of the chemical changes in the rhizosphere of the nickel hyperaccumulator Alyssum murale with the non-accumulator Raphanus sativus Plant Soil 164 251–259 Occurrence Handle1:CAS:528:DyaK2MXislamsrc%3D

    CAS  Google Scholar 

  • A Brandstetter R S Sletten A Mentler W W Wenzel (1996) ArticleTitleEstimating dissolved organic carbon in natural waters by UV absorbance (254 nm) Z. Pflanzenernähr. Bodenk. 159 605–607 Occurrence Handle1:CAS:528:DyaK2sXltV2isA%3D%3D

    CAS  Google Scholar 

  • G W Brümmer J Gerth U Herms (1986) ArticleTitleHeavy metal species, mobility and availability in soils Z. Pflanzenernähr. Bodenk. 149 382–398

    Google Scholar 

  • J A Delgado M C Amacher (1995) ArticleTitleModeling the uptake of sulfur by crops on two alluvial soils of Louisiana: soybeans Comm. Soil Sci. Plant Anal. 26 1491–1505 Occurrence Handle1:CAS:528:DyaK2MXlsFyqu70%3D

    CAS  Google Scholar 

  • W J Fitz W W Wenzel H Zhang J Nurmi K Stipek Z Fischerova P Schweiger G Köllensperger L Q Ma G Stingeder (2003) ArticleTitleRhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring of phytoremoval efficiency Environ. Sci. Technol. 37 5008–5014 Occurrence Handle1:CAS:528:DC%2BD3sXotVakurs%3D Occurrence Handle14620831

    CAS  PubMed  Google Scholar 

  • W J Fitz W W Wenzel G Wieshammer B Istenič (2003) ArticleTitleb) Microtome sectioning causes artefacts in rhizobox experiments Plant Soil 256 455–462 Occurrence Handle1:CAS:528:DC%2BD3sXotV2jt7k%3D

    CAS  Google Scholar 

  • C W Gray R G McLaren A H C Roberts L M Condron (1998) ArticleTitleSorption and desorption of cadmium from some New Zealand soils: Effect of pH and contact time Aust. J. Soil Res. 36 199–216 Occurrence Handle1:CAS:528:DyaK1cXitlymtbo%3D

    CAS  Google Scholar 

  • D Hammer C Keller (2002) ArticleTitleChanges in the rhizosphere of metal-accumulating plants evidenced by chemical extractants J. Environ. Qual. 31 1561–1569 Occurrence Handle1:CAS:528:DC%2BD38XnsFemsL0%3D Occurrence Handle12371173

    CAS  PubMed  Google Scholar 

  • Hamon R E and McLaughlin M J (1999) Use of the hyperaccumulator Thlaspi cearulescens for bioavailable contaminant striping. In Proc. 5th International Conference on the Biogeochemistry of Trace Elements. Eds. W WWenzel et al. pp. 908–909, Vienna

  • Himmelbauer M L, Puschenreiter M, Schnepf A, Loiskandl W and Wenzel W W (2003) Root morphological characteristics of nickel hyperaccumulator Thlaspi goesingense. In Proceedings of the 7th ICOBTE. Eds. G Gobran and NLepp. pp. 180-181. S LU Service/Repro, Uppsala

  • R Idris R Trifonova M Puschenreiter W W Wenzel A Sessitsch (2004) ArticleTitleBacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense Appl. Environ. Microbiol. 70 2667–2677 Occurrence Handle1:CAS:528:DC%2BD2cXktlCnsr4%3D Occurrence Handle15128517

    CAS  PubMed  Google Scholar 

  • D L Jones D S Brassington (1998) ArticleTitleSorption of organic acids in acid soils and its implications in the rhizosphere Eur. J. Soil Sci. 49 447–455 Occurrence Handle1:CAS:528:DyaK1cXmtF2ktL8%3D

    CAS  Google Scholar 

  • D L Jones P G Dennis A G Owen P A W Hees Particlevan (2003) ArticleTitleOrganic acid behaviour in soils – misconceptions and knowledge gaps Plant Soil 248 31–41 Occurrence Handle1:CAS:528:DC%2BD3sXhtFCqsro%3D

    CAS  Google Scholar 

  • L Kerkeb U Krämer (2003) ArticleTitleThe role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea Plant Physiol. 131 716–724 Occurrence Handle1:CAS:528:DC%2BD3sXhtlyjs7k%3D Occurrence Handle12586895

    CAS  PubMed  Google Scholar 

  • G J D Kirk S Staunton (1989) ArticleTitleOn predicting the fate of radioactive cesium in soil beneath grassland J. Soil Sci. 40 71–84 Occurrence Handle1:CAS:528:DyaL1MXkslKqtbk%3D

    CAS  Google Scholar 

  • G J D Kirk (1999) ArticleTitleA model of phosphate solubilization by organic anion excretion from plant roots Eur. J. Soil Sci. 50 369–378 Occurrence Handle1:CAS:528:DyaK1MXmsVajtrs%3D

    CAS  Google Scholar 

  • M M Lasat A J M Baker L V Kochian (1996) ArticleTitlePhysiological characterisation of root Zn 2+ absorption and translocation to shoots in Zn hyperaccumulator and non-accumulator species of Thlaspi Plant Physiol. 112 1715–1722 Occurrence Handle1:CAS:528:DyaK2sXlsVKr Occurrence Handle12226473

    CAS  PubMed  Google Scholar 

  • Y M Li R L Chaney E P Brewer J S Angle J Nelkin (2003) ArticleTitlePhytoextraction of nickel and cobalt by hyperaccumulator Alyssum species grown on nickel-contaminated soils Environ. Sci. Technol. 37 1463–1468 Occurrence Handle1:CAS:528:DC%2BD3sXhslSls7g%3D

    CAS  Google Scholar 

  • D R Lide (2000) Handbook of Chemistry and Physics EditionNumber83 CRC Press LLC Boca Raton

    Google Scholar 

  • S P McGrath Z G Shen F J Zhao (1997) ArticleTitleHeavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils Plant Soil 188 153–159 Occurrence Handle1:CAS:528:DyaK2sXjvFymsL8%3D

    CAS  Google Scholar 

  • S P McGrath F J Zhao (2003) ArticleTitlePhytoextraction of metals and metalloids from contaminated soils Curr. Op. Biotechnol. 14 1–6

    Google Scholar 

  • R G McLaren C A Backes A W Rate R S Swift (1998) ArticleTitleCadmium and cobalt desorption kinetics from soil clays: effect of sorption period Soil Sci. Soc. Am. J. 62 332–337 Occurrence Handle1:CAS:528:DyaK1cXivF2jt7g%3D

    CAS  Google Scholar 

  • G L Mullins J H Edwards (1989) ArticleTitleA comparison of two methods for measuring potassium influx kinetics by intact corn seedlings J. Plant Nutr. 12 485–496 Occurrence Handle1:CAS:528:DyaL1MXksFelurc%3D

    CAS  Google Scholar 

  • D R Parker J F Fiedler (1997) ArticleTitleReevaluating the free ion activity model of trace metal availability to higher plants Plant Soil 196 223–228 Occurrence Handle1:CAS:528:DyaK2sXotVOhsrk%3D

    CAS  Google Scholar 

  • M Puschenreiter S Wieczorek O Horak W W Wenzel (2003) ArticleTitleChemical changes in the rhizosphere of metal hyperaccumulator and excluder Thlaspi species J. Plant Nutr. Soil Sci. 166 579–584 Occurrence Handle1:CAS:528:DC%2BD3sXoslelt7k%3D

    CAS  Google Scholar 

  • R D Reeves A J M Baker (1984) ArticleTitleStudies on metal uptake by plants from serpentine and non-serpentine populations of Thlaspi goesingense Halacsy (Cruciferae) New. Phytol. 98 191–204 Occurrence Handle1:CAS:528:DyaL2MXltVSi

    CAS  Google Scholar 

  • Z Rengel (1993) ArticleTitleMechanistic simulation models of nutrient uptake: A review Plant Soil 152 161–173 Occurrence Handle1:CAS:528:DyaK3sXmsVyqs74%3D

    CAS  Google Scholar 

  • D E Salt N Kato U Krämer R D Smith I Raskin (2000) The role of root exudates in nickel hyperaccumulation and tolerance in accumulator and nonaccumulator species of Thlaspi N Terry G Bañuelos (Eds) Phytoremediation of Contaminated Soil and Water CRC Press Boca Raton 189–200

    Google Scholar 

  • A Saltelli K Chan E M Scott (2000) Sensitivity Analysis John Wiley & Sons Ltd. Chichester

    Google Scholar 

  • A Schnepf T Schrefl W W Wenzel (2002) ArticleTitleThe suitability of pde-solvers in rhizosphere modeling, exemplified by three mechanistic rhizosphere models J. Plant Nutr. Soil Sci. 165 713–718 Occurrence Handle1:CAS:528:DC%2BD3sXhvVarsA%3D%3D

    CAS  Google Scholar 

  • C Schwartz J L Morel S Saumier S N Whiting A J M Baker (1999) ArticleTitleRoot development of the zinc-hyperaccumulator plant Thlaspi caerulescens as affected by metal origin, content and localization in soil Plant Soil 208 103–115 Occurrence Handle1:CAS:528:DyaK1MXltFGisLY%3D

    CAS  Google Scholar 

  • Z G Shen F J Zhao S P McGrath (1997) ArticleTitleUptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum Plant, Cell Environ. 20 898–906

    Google Scholar 

  • Syring K M and Claassen N (1996) Model of nutrient uptake © NST 3.0. http://www.gwdg.de/∼uaac/

  • P B Tinker P H Nye (2000) Solute Movement in the Rhizosphere Oxford University Press New York

    Google Scholar 

  • K C J Van Rees N P Comerford P S C Rao (1990) ArticleTitleDefining soil buffer power: Implications for diffusion and nutrient uptake modeling Soil Sci. Soc. Am. J. 54 1505–1507 Occurrence Handle1:CAS:528:DyaK3MXht1Sksbk%3D

    CAS  Google Scholar 

  • A P Vanselow (1932) ArticleTitleEquilibria of the base-exchange reactions of bentonites, permutites, soil colloids, and zeolites Soil Sci. 33 95–113 Occurrence Handle1:CAS:528:DyaA38XisVWksw%3D%3D

    CAS  Google Scholar 

  • W W Wenzel W E H Blum A Brandstetter F Jockwer A Köchl M Oberforster H E Oberländer C Riedler K Roth I Vladeva ((1996)) ArticleTitleEffects of soil properties and cultivar on cadmium accumulation in wheat grain Z. Pflanzenernähr. Bodenk. 159 609–614

    Google Scholar 

  • W W Wenzel R S Sletten A Brandstetter G Wieshammer G Stingeder ((1997)) ArticleTitleAdsorption of trace metals by tension lysimeters: Nylon membrane vs. porous ceramic cup J. Environ. Qual. 26 1430–1434

    Google Scholar 

  • Wenzel WW, Adriano DC, Salt DE and Smith R (1999a) Phytoremediation: A plant-microbe-based system. In Bioremediation of Contaminated Soils. Eds. Adriano DC, Bollag J-M, Frankenberger WT Jr and Sims RC. pp. 457–510. SSSA Special Monograph no. 37, Madison

  • W W Wenzel E Lombi D C Adriano (1999) Biogeochemical processes in the rhizosphere: Role in phytoremediation of metal-polluted soils M NV Prasad J Hagemejer (Eds) Heavy Metal Stress in Plants: From Molecules to Ecosystems. Springer New York 273–303

    Google Scholar 

  • W W Wenzel F Jockwer (1999) ArticleTitleAccumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps Environ. Pollut. 104 145–155 Occurrence Handle1:CAS:528:DyaK1MXpsFGqtQ%3D%3D

    CAS  Google Scholar 

  • W W Wenzel G Wieshammer W Fitz M Puschenreiter (2001) ArticleTitleNovel rhizobox design to assess rhizosphere characteristics at high spatial resolution Plant Soil 237 37–45 Occurrence Handle1:CAS:528:DC%2BD38XovVamsQ%3D%3D

    CAS  Google Scholar 

  • W W Wenzel M Bunkowski M Puschenreiter O Horak (2003) ArticleTitleRhizosphere characteristics of indigenously growing nickel hyperaccumulator and tolerant plants on serpentine soil Environ. Pollut. 123 131–138 Occurrence Handle1:CAS:528:DC%2BD3sXitlGjtbY%3D Occurrence Handle12663213

    CAS  PubMed  Google Scholar 

  • S N Whiting J R Leake S P McGrath A JM Baker (2001) ArticleTitleAssessment of Zn mobilization in the rhizosphere of Thlaspi caerulescens by bioassay with non-accumulator plants and soil extraction Plant Soil 237 147–156 Occurrence Handle1:CAS:528:DC%2BD38XovValtg%3D%3D

    CAS  Google Scholar 

  • S N Whiting J R Leake S P McGrath A JM Baker (2001) ArticleTitleZinc accumulation by Thlaspi caerulescens from soils with different Zn availability: A pot study Plant Soil 236 11–18 Occurrence Handle1:CAS:528:DC%2BD3MXotlajsb0%3D

    CAS  Google Scholar 

  • H Zeien G W Brümmer (1989) ArticleTitleChemische Extraktionen zur Bestimmung von Schwermetallbindungsformen in Böden Mitteilgn. Dtsch. Bodenkundl. Gesellsch. 59 505–510

    Google Scholar 

  • F J Zhao R E Hamon M J McLaughlin (2001) ArticleTitleRoot exudates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilisation New Phytol. 151 613–620 Occurrence Handle1:CAS:528:DC%2BD3MXntFGns7o%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter W. Wenzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puschenreiter, M., Schnepf, A., Millán, I.M. et al. Changes of Ni biogeochemistry in the rhizosphere of the hyperaccumulator Thlaspi goesingense. Plant Soil 271, 205–218 (2005). https://doi.org/10.1007/s11104-004-2387-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-004-2387-5

Keywords

Navigation