Skip to main content
Log in

Distribution, transformation and bioavailability of trivalent and hexavalent chromium in contaminated soil

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate solid-phase distribution, transformation, and bioavailability of Cr in Cr(III) and Cr(VI) contaminated soils. The effects of EDTA treatment on solid-phase distribution of Cr in soils were also examined. The results show that Cr in both initially Cr(III)- and Cr(VI)-contaminated soils was mainly present in the organic matter bound fraction. Chromium had similar solid-phase distribution and similar overall binding intensity in both Cr(III)- and Cr(VI)-contaminated soils after a growing season. Transformation between Cr(III) and Cr(VI) took place in both Cr(III)- and Cr(VI)-treated soils. Chromium in the Cr(III)-contaminated soils was mostly present as Cr(III), while Cr in Cr(VI)-treated soils was mainly transformed into Cr(III). About 2% of Cr in native non-treated soils was found as Cr(VI). EDTA treatment increased Cr in soluble and exchangeable fraction in Cr(III)-treated soils. In both Cr(III)- and Cr(VI)-contaminated soils, Cr in oxide bound and organic matter bound

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adriano D C 2001 Trace Elements in the Terrestrial Environment: Biogeochemistry, Bioavailability, and Risks of Metals, 2nd ed. Springer, New York.

    Book  Google Scholar 

  • Bartlett R J and James B R 1979 Behavior of chromium in soils: III. Oxidation. J. Environ. Qual. 8, 31–35.

    Article  CAS  Google Scholar 

  • Bartlett R J and James B R 1988 Mobility and bioavailability of chromium in soils. In Chromium in Nature and Human Environments. Ed. J O Nriagu and E Nieboer. John Wiley & Sons, New York.

    Google Scholar 

  • Blaylock M J, Salt D E, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley B D and Raskin I 1997 Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Technol. 31, 860–865.

    Article  Google Scholar 

  • Bolan N S, Adriano D C, Natesan R and Koo B J 2003 Effects of organic amendments on the reduction and phytoavailability of chromate in mineral soil. J Environ. Quality. 32, 120–128.

    Article  CAS  Google Scholar 

  • Chung J, Burau R G and Zasoski R J 2001 Chromium generation by chromate depleted substance materials. Water Air Soil Pollut. 128, 407–417.

    Article  CAS  Google Scholar 

  • Cifuentes F R, Lindemann W C and Barton L L 1996 Chromium sorption and reduction in soil with implications to bioremediation. Soil Sci. 233-241.

    Article  CAS  Google Scholar 

  • Dushenkov V, Kumar P B A N, Motto H and Raskin I 1995 Rhizo-filtration: the use of plants to remove heavy metals from aqueous streams. Environ. Sci. Technol. 29, 1239–1245.

    Article  CAS  Google Scholar 

  • Ebbs S D and Kochian L V 1998 Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassica juncea). Environ. Sci. Technol. 32, 802–806.

    Article  CAS  Google Scholar 

  • Fendorf S E and Sparks D L 1994 Mechanisms of chromium (III) sorption on silica: II. Effects of reaction conditions. Environ. Sci. Technol. 28, 290–297.

    Article  CAS  Google Scholar 

  • Fendorf S E, Zasoski R J and Burau R G 1993 Competing metal ion influences on chromium (III) oxidation by birnessite. Soil Sci. Soc. Am. J. 57: 1508–1515.

    Article  CAS  Google Scholar 

  • Han F X and Banin A 1996. Solid-phase manganese fractionation changes in saturated arid-zone soils: Pathways and kinetics. Soil Sci. Soc. Am. J. 60, 1072–1080.

    Article  Google Scholar 

  • Han F X and Banin A 1997 Long-term transformations and redistribution of potentially toxic heavy metals in arid-zone soils. I: Under saturated conditions. Water Air Soil Pollut. 95, 399–423.

    Google Scholar 

  • Han F X and Banin A 1999 Long-term transformations and redistribution of potentially toxic heavy metals in arid-zone soils. II: Under the field capacity regime. Water Air Soil Pollut. 114, 221–250.

    Article  CAS  Google Scholar 

  • Han F X, Banin A and Triplett G B 2001. Redistribution of heavy metals in arid-zone soils under a wetting-drying soil moisture regime. Soil Sci. 166, 18–28.

    Article  CAS  Google Scholar 

  • Han F X, Banin A, Kingery W L, Triplett G B, Zhou L X, Zheng S J and Ding W X 2003a New approach to studies of redistribution of heavy metals in soils. Adv. Environ. Res. 8, 113–120 10.1016/S1093-0191(02)00142-9

    Article  CAS  Google Scholar 

  • Han F X, Banin A, Su Y, Monts D L, Plodinec M J, Kingery W L and Triplett G B 2002 Industrial age anthropogenic inputs of heavy metals into the pedosphere. Naturwissenschaften 89, 497–504.

    Article  CAS  Google Scholar 

  • Han F X, Kingery W L, Schreiber J and Adriano D C 2003b Bioavailability of trace elements in bulk and rhizosphere soils amended with poultry waste. Submitted to Water Air Soil Pollut.

  • Huang J W, Berti W R and Cunningham S D 1997 Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ. Sci. Technol. 31, 800–805.

    Article  CAS  Google Scholar 

  • James B R, Petura J C, Vitale R J and Mussoline G R 1995 Hexavalent chromium extraction from soils: A comparison of five methods. Environ. Sc. Technol. 29, 2377–2380.

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H, Kabata-Pendias A 2000 Trace Elements in Soils and Plants, 3th ed. CRC Press.

  • Kim J G, Dixon J B, Chusuei C C and Deng Y 2002 Oxidation of chromium (III) to (VI) by manganese oxides. Soil Sci. Soc. Am. J. 66, 306–315.

    Article  CAS  Google Scholar 

  • Li Z and Shuman L 1996 Extractability of zinc, cadmium and nickel in soils amended with EDTA. Soil Sci. 161, 226–232.

    Article  CAS  Google Scholar 

  • Losi M E, Amrhein C and Frankenberger W T 1994 Factors affecting chemical and biological reduction of Cr(VI) in soil. Environ. Toxicol. Chem. 13, 1727–1735.

    Article  CAS  Google Scholar 

  • McGrath S P and Cegarra J 1992. Chemical extractability of heavy metals during and after long-term applications of sewage sludge to soil. J. Soil Sci. 43, 313–321.

    Article  CAS  Google Scholar 

  • Oliver D S, Brockman F J, Bowman R S and Kieft T L 2003 Microbial reduction of hexavalent chromium under vadose zone conditions. J. Environ. Qual. 32, 317–324.

    Article  CAS  Google Scholar 

  • Patterson R R, Fendorf S E and Fendorf M 1997 Reduction of hexavalent chromium by amorphous iron sulfide. Environ. Sci. Technol. 31, 2039–2044.

    Article  CAS  Google Scholar 

  • Pettry D E and Switzer R E 2000 Arsenic concentrations in selected soils and parent materials in Mississippi. Mississippi Agricultural Experiment Station, Miss. State Univ. Mississippi State. MS 39762, USA.

    Google Scholar 

  • Riley R G and Zachara J M 1992 Chemical contaminants on DOE lands and selection of contaminant mixtures from subsurface science research. U.S. Department of Energy, Washington, DC.

    Google Scholar 

  • Salt D E, Pickering I J, Prince R C, Gleba D, Dushenkov S, Smith R D and Raskin I 1997 Metal accumulation by aquacultured seedlings of Indian mustard. Environ. Sci. Technol. 31, 1636–1644.

    Article  CAS  Google Scholar 

  • Shahandeh H and Hossner L R 2000 Plant screening for chromium phytoremediation. Int. J. Phytoremediat. 2, 31–51.

    Article  CAS  Google Scholar 

  • Shuman L M 1985 Fractionation method for soil microelements. Soil Sci. 140, 11–22.

    Article  CAS  Google Scholar 

  • Shuman L M 1982 Separating soil iron- and manganese-oxide fractions for microelement analysis. Soil Sci. Soc. Am. J. 46, 1099–1102.

    Article  CAS  Google Scholar 

  • Sims J T and Kline J S 1991. Chemical fractionation and plant uptake of heavy metals in soils amended with composted sewage sludge. J. Environ. Qual. 20, 387–395.

    Article  CAS  Google Scholar 

  • Sposito G, Lund L J and Chang A C 1982 Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases. Soil Sci. Soc. Am. J. 46, 260–264.

    Article  CAS  Google Scholar 

  • Stewart M A, Jardine P M, Barnett M O, Mehlhorn T L, Hyder L K and McKay L D 2003 Influence of soil geochemical and physical properties on the sorption and bioaccessibility of chromium (III). J. Environ. Qual. 32, 129–137.

    Article  CAS  Google Scholar 

  • Tessier A, Campell P G C and Bisson M 1979 Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51, 844–851.

    Article  CAS  Google Scholar 

  • USEPA 1992 Method 7196A: Chromium, Hexavalent (colorimetric). USEPA.

  • USEPA 1996 Method 3060A: Alkaline digestion for hexavalent chromium. USEPA.

  • Wittbrodt P R and Palmer C D 1995 Reduction of Cr(VI) in the presence of excessive soil fulvic acid. Environ. Sci. Technol. 29, 255–263.

    Article  CAS  Google Scholar 

  • Wittbrodt P R and Palmer C D 1996 Effect of temperature, ionic strength, background electrolytes and Fe (III on the reduction of hexavalent chromium by soil humic substance. Environ. Sci. Technol. 30, 2470–2477.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengxiang X. Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, F.X., Su, Y., Sridhar, B.B.M. et al. Distribution, transformation and bioavailability of trivalent and hexavalent chromium in contaminated soil. Plant Soil 265, 243–252 (2004). https://doi.org/10.1007/s11104-005-0975-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-005-0975-7

Key words

Navigation