Skip to main content

Advertisement

Log in

Soil pH Effects on Uptake of Cd and Zn by Thlaspi caerulescens

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

For phytoextraction to be successful and viable in environmental remediation, strategies that can optimize plant uptake must be identified. Thlaspi caerulescens is an important hyperaccumulator of Cd and Zn, whether adjusting soil pH is an efficient way to enhance metal uptake by T. caerulescens must by clarified. This study used two soils differing in levels of Cd and Zn, which were adjusted to six different pH levels. Thlaspi caerulescens tissue metal concentrations and 0.1 M Sr(NO3)2 extractable soil metal concentrations were measured. The soluble metal form of both Cd and Zn was greatly increased with decreasing pH. Lowering pH significantly influenced plant metal uptake. For the high metal soil, highest plant biomass was at the lowest soil pH (4.74). The highest shoot metal concentration was at the second lowest pH (5.27). For low metal soil, due to low pH induced Al and Mn toxicity, both plant growth and metal uptake was greatest at intermediate pH levels. The extraordinary Cd phytoextraction ability of T. caerulescens was further demonstrated in this experiment. In the optimum pH treatments, Thlaspi caerulescens extracted 40% and 36% of total Cd in the low and high metal soils, respectively, with just one planting. Overall, decreasing pH is an effective strategy to enhance phytoextraction. But different soils had various responses to acidification treatment and a different optimum pH may exist. This pH should be identified to avoid unnecessarily extreme acidification of soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Z A S Ahnstrom D R Parker (1999) ArticleTitleDevelopment and assessment of a sequential extraction procedure for the fractionation of soil cadmium Soil Sci. Soc. Am. J. 63 1650–1658 Occurrence Handle1:CAS:528:DC%2BD3cXhsFyku7w%3D Occurrence Handle10.2136/sssaj1999.6361650x

    Article  CAS  Google Scholar 

  • T U Aualiitia W F Pickering (1987) ArticleTitleThe specific sorption of trace metal amounts of Cu, Pb, and Cd by inorganic particulates Water Air Soil Poll. 35 171–185 Occurrence Handle10.1007/BF00183852 Occurrence Handle1:CAS:528:DyaL2sXlvVejsLc%3D

    Article  CAS  Google Scholar 

  • A J M Baker R R Brooks (1989) ArticleTitleTerrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry Biorecovery 1 81–126 Occurrence Handle1:CAS:528:DyaL1MXltlSltrc%3D

    CAS  Google Scholar 

  • R R Brooks (1998) Plants that Hyperaccumulate Heavy Metals CAB International Wallingford, UK

    Google Scholar 

  • S L Brown R L Chaney J S Angle A J M Baker (1994) ArticleTitlePhytoextraction potential of Thlaspi caerulescens and Bladder Campion for zinc and cadmium-contaminated soil J. Environ. Qual. 23 1151–1157 Occurrence Handle1:CAS:528:DyaK2cXntVSjsL8%3D

    CAS  Google Scholar 

  • S L Brown R L Chaney J S Angle A J M Baker (1995) ArticleTitleZinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens and metal tolerant Silene vulgaris grown on sludge-amended soils Environ. Sci. Technol. 29 1581–1585 Occurrence Handle10.1021/es00006a022 Occurrence Handle1:CAS:528:DyaK2MXlsFeltLw%3D

    Article  CAS  Google Scholar 

  • Campbell C R 1992 Determination of total nitrogen in plant tissue by combustion. In Plant Analysis Reference Procedures for the Southern Region of the United States. Ed. C O Plank. pp. 21–23. Southern Cooperative Series Bulletin 368

  • P D Castilho W J Chardon (1995) ArticleTitleUptake of soil cadmium by three field crops and its prediction by a pH-dependent Freundlich sorption model Plant Soil 171 263–266 Occurrence Handle10.1007/BF00010280

    Article  Google Scholar 

  • Chaney R L 1983 Plant uptake of inorganic waste constituents. In Land Treatment of Hazardous Wastes. pp. 50–77. Noyes Data Corporation, Park Ridge, NJ

  • R L Chaney M Malik Y M Li S L Brown E P Brewer J S Angle A J M Baker (1997) ArticleTitlePhytoremediation of soil metals Curr. Opin. Biotech. 8 279–284 Occurrence Handle10.1016/S0958-1669(97)80004-3 Occurrence Handle1:CAS:528:DyaK2sXjvFSqtbc%3D Occurrence Handle9206007

    Article  CAS  PubMed  Google Scholar 

  • Eckert D and Sims J T 1995 Recommended soil pH and lime requirement test. In Recommended Soil Testing Procedures for the Northeastern United States. Eds. J T Smims and A Wolf. pp. 16–21. Northeastern Regional Publication No. 493

  • H Farrah W F Pickering (1976) ArticleTitleThe sorption of copper species by clays. II. Illite and montmorillonite Aust. J. Chem. 29 1177–1184 Occurrence Handle1:CAS:528:DyaE28XlvVSitL4%3D

    CAS  Google Scholar 

  • H Farrah W F Pickering (1977) ArticleTitleThe sorption of lead and cadmium species by clay and minerals Aust. J. Chem. 30 1417–1422 Occurrence Handle1:CAS:528:DyaE2sXlslSmsbc%3D Occurrence Handle10.1071/CH9771417

    Article  CAS  Google Scholar 

  • R L Flannery D K Markus (1980) ArticleTitleAutomated analysis of soil extracts for P, K, Ca, and Mg J. Assoc. Off. Anal. Chem. 63 779–787 Occurrence Handle1:CAS:528:DyaL3cXltFartLc%3D

    CAS  Google Scholar 

  • Gee G W and Bauder J W 1986 Particle size analysis. In Methods of Soil Analysis, Part 1. Agronomy Monograph 9. pp. 383–411. American Society of Agronomy, Madison, WI

  • G E M Hall J E Vaive R Beer M Hoashi (1996) ArticleTitleSelective leaches revisited with emphasis on the amorphous Fe oxyhydroxide phase extraction J. Geochem. Explor. 56 59–78 Occurrence Handle10.1016/0375-6742(95)00050-X Occurrence Handle1:CAS:528:DyaK28XjsVyitL0%3D

    Article  CAS  Google Scholar 

  • D Hammer C Keller (2003) ArticleTitlePhytoextraction of Cd and Zn with Thlaspi caerulescens in field trials Soil Use Manage. 19 144–149 Occurrence Handle10.1079/SUM2002182

    Article  Google Scholar 

  • M G Hickey J A Kittrick (1984) ArticleTitleChemical portioning of cadmium, copper, nickel, and zinc in soils and sediments containing high levels of heavy metals J. Environ. Qual. 13 372–376 Occurrence Handle1:CAS:528:DyaL2cXkvFKrsLg%3D

    CAS  Google Scholar 

  • A Kayser K Wenger A Keller W Attinger H R Felix S K Gupta R Schulin (2000) ArticleTitleEnhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulfur amendments Environ. Sci. Technol. 34 1778–1783 Occurrence Handle10.1021/es990697s Occurrence Handle1:CAS:528:DC%2BD3cXhvFKjs7Y%3D

    Article  CAS  Google Scholar 

  • C Keller D Hammer (2004) ArticleTitleMetal availability and soil toxicity after repeated croppings of Thlaspi caerulescens in metal contaminated soils Environ. Pollut. 131 243–254 Occurrence Handle10.1016/j.envpol.2004.02.030 Occurrence Handle1:CAS:528:DC%2BD2cXlsVSms7g%3D Occurrence Handle15234091

    Article  CAS  PubMed  Google Scholar 

  • N D Kim J E Fergusson (1991) ArticleTitleEffectiveness of a commonly used sequential extraction technique in determining the speciation of cadmium in soils Sci. Tot. Environ 105 191–209 Occurrence Handle10.1016/0048-9697(91)90341-B Occurrence Handle1:CAS:528:DyaK3MXltFSiu74%3D

    Article  CAS  Google Scholar 

  • B P Knight F J Zhao S P McGrath Z G Shen (1997) ArticleTitleZinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution Plant Soil 197 71–78 Occurrence Handle10.1023/A:1004255323909 Occurrence Handle1:CAS:528:DyaK1cXjs12lsg%3D%3D

    Article  CAS  Google Scholar 

  • W S Ligon W H Pierre (1932) ArticleTitleSoluble aluminum studies. II. Minimum concentrations of aluminum found to be toxic to corn, sorghum and barley in culture solutions Soil Sci. 34 307–321 Occurrence Handle1:CAS:528:DyaA3sXlt1Sj

    CAS  Google Scholar 

  • E Lombi F J Zhao S J Dunham S P McGrath (2000) ArticleTitleCadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense New Phytol. 145 11–20 Occurrence Handle10.1046/j.1469-8137.2000.00560.x Occurrence Handle1:CAS:528:DC%2BD3cXitVejt7g%3D

    Article  CAS  Google Scholar 

  • E Lombi F J Zhao S J Dunham S P McGrath (2001a) ArticleTitlePhytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextracion J. Environ. Qual. 30 1919–1926 Occurrence Handle1:CAS:528:DC%2BD38Xht1SlsL4%3D

    CAS  Google Scholar 

  • E Lombi F J Zhao S P McGrath S D Young G A Sacchi (2001b) ArticleTitlePhysiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype New Phytol. 149 53–60 Occurrence Handle10.1046/j.1469-8137.2001.00003.x Occurrence Handle1:CAS:528:DC%2BD3MXnvF2quw%3D%3D

    Article  CAS  Google Scholar 

  • Y M Luo P Christie A J M Baker (2000) ArticleTitleSoil solution Zn and pH dynamics in non-rhizosphere soil and in the rhizosphere of Thlaspi caerulescens grown in a Zn/Cd contaminated soil Chemosphere 41 161–164 Occurrence Handle10.1016/S0045-6535(99)00405-1 Occurrence Handle1:CAS:528:DC%2BD3cXivFKksbo%3D Occurrence Handle10819195

    Article  CAS  PubMed  Google Scholar 

  • S P McGrath S J Dunham R L Correll (2000) Potential for phytoextraction of zinc and cadmium from soils using hyperaccumulator plants N Terry G Bañuelos (Eds) Phytoremediation of Contaminated Soil and Water Lewis Publishers Boca Raton, FL 109–128

    Google Scholar 

  • S P McGrath Z G Shen F J Zhao (1997) ArticleTitleHeavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils Plant Soil 188 153–159 Occurrence Handle10.1023/A:1004248123948 Occurrence Handle1:CAS:528:DyaK2sXjvFymsL8%3D

    Article  CAS  Google Scholar 

  • S P McGrath F J Zhao E Lombi (2002) ArticleTitlePhytoremediation of metals, metalloids, and radionuclides Adv. Agron. 75 1–56 Occurrence Handle1:CAS:528:DC%2BD38XitVSjsLw%3D

    CAS  Google Scholar 

  • F T McLean B E Gilbert (1927) ArticleTitleThe relative aluminum tolerance of crop plant Soil Sci. 24 163–176 Occurrence Handle1:CAS:528:DyaB1cXisFWq

    CAS  Google Scholar 

  • B F Metting (1993) Soil Microbial Ecology Marcel Dekker New York

    Google Scholar 

  • R P Narwal B R Singh A R Panhwar (1983) ArticleTitlePlant availability of heavy metals in a sludge-treated soil: I. Effect of sewage sludge and soil pH on the yield and chemical composition of rape J. Environ. Qual. 12 358–365 Occurrence Handle1:CAS:528:DyaL3sXkvVOiurg%3D Occurrence Handle10.2134/jeq1983.123358x

    Article  CAS  Google Scholar 

  • Peiffer R A 1976 Inter- and intra-specific plant difference in tolerance to aluminum. Ph.D. Thesis. The Pennsylvania State University, University Park, PA

  • A J Pollard K D Harper J A C Smith (2002) ArticleTitleThe genetic bases of metal hyperaccumulation in plants Crit. Rev. Plant Sci. 21 539–566 Occurrence Handle10.1080/0735-260291044359 Occurrence Handle1:CAS:528:DC%2BD3sXhtlKitrY%3D

    Article  CAS  Google Scholar 

  • R D Reeves R R Brooks (1983) ArticleTitleEuropean species of Thlaspi L. (Cruciferae) as indicators of nickel and zinc J. Geochem. Explor. 18 275–283 Occurrence Handle10.1016/0375-6742(83)90073-0 Occurrence Handle1:CAS:528:DyaL3sXlsl2htbg%3D

    Article  CAS  Google Scholar 

  • R D Reeves C Schwartz J L Morel J Edmondson (2001) ArticleTitleDistribution and metal-accumulation behavior of Thlaspi caerulescens and associated metallophytes in France Int. J. Phytoremediation 3 145–172 Occurrence Handle1:CAS:528:DC%2BD3MXlsFSit7c%3D

    CAS  Google Scholar 

  • B H Robinson M Leblanc D Petit R R Brooks J H Kirkman P E H Gregg (1998) ArticleTitleThe potential of Thlaspi caerulescens for phytoremediation of contaminated soils Plant Soil 203 47–56 Occurrence Handle10.1023/A:1004328816645 Occurrence Handle1:CAS:528:DyaK1cXnslGnsL4%3D

    Article  CAS  Google Scholar 

  • N Roosens N Verbruggen P Meerts P Ximénez-Embún J A C Smith (2003) ArticleTitleNatural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from western Europe Plant Cell Environ. 26 1657–1672 Occurrence Handle10.1046/j.1365-3040.2003.01084.x Occurrence Handle1:CAS:528:DC%2BD3sXptlaht7o%3D

    Article  CAS  Google Scholar 

  • SAS Release 8.2 1999–2001 SAS Institute Inc., Cary, NC

  • C Schwartz J L Morel S Saumier S N Whiting A J M Baker (1999) ArticleTitleRoot development of the zinc-hyperaccumulator plant Thlaspi caerulescens as affected by metal origin, content and localization in soil Plant Soil 208 103–115 Occurrence Handle10.1023/A:1004519611152 Occurrence Handle1:CAS:528:DyaK1MXltFGisLY%3D

    Article  CAS  Google Scholar 

  • Z G Shen F J Zhao S P McGrath (1997) ArticleTitleUptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum Plant Cell Environ. 20 898–906 Occurrence Handle10.1046/j.1365-3040.1997.d01-134.x Occurrence Handle1:CAS:528:DyaK2sXlt1Wmt7g%3D

    Article  CAS  Google Scholar 

  • L M Shuman (1982) ArticleTitleSeparating soil iron- and manganese-oxide fractions for microelement analysis Soil Sci. Soc. Am. J. 46 1099–1102 Occurrence Handle1:CAS:528:DyaL38XmtFCrtb0%3D Occurrence Handle10.2136/sssaj1982.03615995004600050044x

    Article  CAS  Google Scholar 

  • L M Shuman (1983) ArticleTitleSodium hypochlorite methods for extracting microelements associated with organic matter Soil Sci. Soc. Am. J. 47 656–660 Occurrence Handle1:CAS:528:DyaL3sXlt1Whs7o%3D Occurrence Handle10.2136/sssaj1983.03615995004700040010x

    Article  CAS  Google Scholar 

  • L M Shuman (1991) Chemical forms of micronutrients in soil J J Mortvedt (Eds) Micronutrients in Agriculture EditionNumber2 SSSA Book Ser. 4. SSSA Madison, WI 113–144

    Google Scholar 

  • J T Sims J S Kline (1991) ArticleTitleChemical fractionation and plant uptake of heavy metals in soils amended with co-composted sewage sludge J. Environ. Qual. 20 387–395 Occurrence Handle1:CAS:528:DyaK3MXisVKgtLk%3D

    CAS  Google Scholar 

  • Small E P 1995 Field capacity is not saturation. Soil Profiles 5, No 2

  • D A Storer (1984) ArticleTitleA simple high sample volume ashing procedure for determining soil organic matter Commun. Soil Sci. Plan. 15 759–772 Occurrence Handle1:CAS:528:DyaL2cXkvV2ls74%3D

    CAS  Google Scholar 

  • K G Tiller J Gerth G Brümmer (1984) ArticleTitleThe relative affinities of Cd, Ni and Zn for different soil clay fractions and goethite Geoderma 34 17–35 Occurrence Handle10.1016/0016-7061(84)90003-X Occurrence Handle1:CAS:528:DyaL2cXmt12itbw%3D

    Article  CAS  Google Scholar 

  • K G Tiller V L K Nayyar P M Clayton (1979) ArticleTitleSpecific and nonspecific sorption of cadmium by soil clays as influenced by zinc and calcium Aust. J. Soil. Res. 17 17–28 Occurrence Handle10.1071/SR9790017 Occurrence Handle1:CAS:528:DyaE1MXkslemtro%3D

    Article  CAS  Google Scholar 

  • C D Tsadilas T Matsi N Barbayiannis D Dimoyiannis (1995) ArticleTitleInfluence of sewage sludge application on soil properties and on distribution and availability of heavy metal fraction Commun. Soil Sci. Plan. 26 2603–2619 Occurrence Handle1:CAS:528:DyaK2MXns12jurw%3D Occurrence Handle10.1080/00103629509369471

    Article  CAS  Google Scholar 

  • S N Whiting M R Broadley P J White (2003) ArticleTitleApplying a solute transfer model to phytoextraction: Zn acquisition by Thlaspi caerulescens Plant Soil 249 45–56 Occurrence Handle10.1023/A:1022542725880 Occurrence Handle1:CAS:528:DC%2BD3sXhsVyrs7Y%3D

    Article  CAS  Google Scholar 

  • S N Whiting J R Leake S P McGrath A J M Baker (2000) ArticleTitlePositive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens New Phytol. 145 199–210 Occurrence Handle10.1046/j.1469-8137.2000.00570.x Occurrence Handle1:CAS:528:DC%2BD3cXisVarsb4%3D

    Article  CAS  Google Scholar 

  • S N Whiting J R Leake S P McGrath A J M Baker (2001a) ArticleTitleAssessment of Zn mobilization in the rhizosphere of Thlaspi caerulescens by bioassay with non-accumulator plants and soil extraction Plant Soil 237 147–156 Occurrence Handle10.1023/A:1013365617841 Occurrence Handle1:CAS:528:DC%2BD38XovValtg%3D%3D

    Article  CAS  Google Scholar 

  • S N Whiting J R Leake S P McGrath A J M Baker (2001b) ArticleTitleZinc accumulation by Thlaspi caerulescens from soils with different Zn availability: a pot study Plant Soil 236 11–18 Occurrence Handle10.1023/A:1011950210261 Occurrence Handle1:CAS:528:DC%2BD3MXotlajsb0%3D

    Article  CAS  Google Scholar 

  • Yanai J, Zhao F J, McGrath S P and Kosaki T, 2005 Effect of soil characteristics on Cd uptake by the hyperaccumulator Thlaspi caerulescens. Environ. Pollut. 139, 167–175

    Google Scholar 

  • F J Zhao R E Hamon M J McLaughlin (2001) ArticleTitleRoot exudates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilization New Phytol. 151 613–620 Occurrence Handle10.1046/j.0028-646x.2001.00213.x Occurrence Handle1:CAS:528:DC%2BD3MXntFGns7o%3D

    Article  CAS  Google Scholar 

  • F J Zhao E Lombi S P McGrath (2003) ArticleTitleAssessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens Plant Soil 249 37–43 Occurrence Handle10.1023/A:1022530217289 Occurrence Handle1:CAS:528:DC%2BD3sXhsVyrsro%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Autumn S. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, A.S., Angle, J.S., Chaney, R.L. et al. Soil pH Effects on Uptake of Cd and Zn by Thlaspi caerulescens . Plant Soil 281, 325–337 (2006). https://doi.org/10.1007/s11104-005-4642-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-005-4642-9

Keywords

Navigation