Skip to main content
Log in

Nickel tolerance and accumulation by bacteria from rhizosphere of nickel hyperaccumulators in serpentine soil ecosystem of Andaman, India

  • Original Paper
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Rhizosphere microorganisms harboring nickel hyperaccumulators, Rinorea bengalensis (Wall.) O. K. and Dichapetalum gelonioides ssp. andamanicum (King) Leenh. endemic to serpentine outcrops of Andaman Islands, India, were screened for their tolerance and accumulation of Ni. The rhizosphere soils from both the plants were rich in total and available Ni along with Co, Cr, Fe and Mg but poor in microbial density and were dominated by bacteria. Out of total 123 rhizosphere microorganisms (99 bacteria and 24 fungi), bacteria were more tolerant to Ni than fungi. Viable cells of selected Ni-tolerant bacterial isolates (MIC = 13.6–28.9 mM Ni) belonging to Pseudomonas, Bacillus and Cupriavidus were capable of accumulating nickel (209.5–224.0 μM Ni g−1 protein) from aqueous solution. Cupriavidus pauculus KPS 201 (MTCC 6280), showing highest degree of nickel tolerance (MIC 28.9 mM Ni) and uptake (224.0 μM Ni g−1 protein, 60 min) was used for detailed study. Kinetics of nickel uptake in C. pauculus KPS 201 followed a linearized Lineweaver-Burk plot. The K m and V max for nickel uptake by minimal medium grown-cells approximated 1.5 mM Ni and 636.9 μM Ni g−1 protein, respectively. The uptake process was inhibited by Co, Cu, Cd, Mg, Mn and Zn, however, complete inhibition was not achieved even in presence of 500 mM Mg. Metabolic inhibitors, sodium azide (1.0 mM) and carbonyl cyanide m-chlorophenylhydrazone (0.4 mM) strongly inhibited nickel uptake suggesting the process as an energy dependent one. The present study clearly shows that bacteria in the rhizosphere of Ni-hyperaccumulators are capable of tolerating high concentration of Ni and also possesses nickel uptake potential. The Ni-hyperaccumulators in combination with these Ni-resistant bacteria could be an ideal tool for nickel bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

MIC:

  Minimum Inhibitory Concentration

HEPES:

  N-[2–Hydroxyethyl] Piperazine-N′-[2-ethanesulphonic acid]

References

  • Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158:219–224

    Article  CAS  Google Scholar 

  • American Public Health Association APHA (1998) Standard methods for the examination of waters and wastewater. American Public Health Association, Washington DC

    Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which accumulate metallic elements: a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos E (eds) Phytoremediation of contaminated soil and water. Lewis Publ, London UK, pp. 85–107

    Google Scholar 

  • Baker AJM, Procter J, van Balgooy MMJ, Reeves RD (1992) Hyperaccumulation of nickel by the flora of the ultramafics of Palawan, Republic of Philippines. In: Baker AJM, Procter J, Reeves RD (eds) The vegetation of ultramafic soils: Proceedings of the first International Conference on Serpentine Ecology, pp. 291–304 Intercept Ltd., Andover, Hampshire, UK

  • Beveridge TJ, Doyle R (1989) Metal ions and bacteria. Wiley, New York

    Google Scholar 

  • Blanco A, Sanz B, Llama MJ, Serra JL (1999) Biosorption of heavy metals to immobilized Phormidium laminosum biomass. J Biotechnol 69:227–240

    Article  CAS  Google Scholar 

  • Bordons A, Jofre J (1987) Nickel accumulation by bacteria. Environ Technol Lett 8:495–500

    CAS  Google Scholar 

  • Brooks RR, Wither ED (1977) Nickel hyperaccumulation by Rinorea bengalensis (Wall.) O. K. J Geochem Explor 7:295–300

    Article  CAS  Google Scholar 

  • Bryson MF, Drake HL (1988) Energy-dependent transport of nickel by Clostridium pasteurianum. J Bacteriol 170:234–238

    PubMed  CAS  Google Scholar 

  • Calomiris JJ, Armstrong TL, Seidler RJ (1984) Association of metal-tolerance with multiple antibiotic resistance of bacteria isolated from drinking water. Appl Environ Microbiol 47:1238–1242

    PubMed  CAS  Google Scholar 

  • Ghozlan HA, Sabry SA, Amer RA (1999) Bioaccumulation of nickel, cobalt and zinc by free and immobilized cells of Pseudomonas spp. Fresenius Environ Bull 8:428–435

    CAS  Google Scholar 

  • Gilman JC (1957) A manual of soil fungi. The Iowa State College Press, Iowa, USA

    Google Scholar 

  • Halder D (1984) Some aspects of the Andaman ophiolite complex. Records Geol Survey India 115:1–11

    Google Scholar 

  • Holt JG, Kreig NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology. Willams and Wilkins, Baltimore, USA

    Google Scholar 

  • Hughes MN, Poole RK (1989) Metals and microorganisms. Chapman and Hall, New York

    Google Scholar 

  • Hughes JC, Noble AD (1991) Extraction of chromium, nickel and iron and the availability of chromium and nickel to plants from some serpentine derived soils from the eastern Transvaal as revealed by various single and sequential extraction techniques. Commun Soil Sci Plant Anal 22:1753–1766

    Article  CAS  Google Scholar 

  • Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677

    Article  PubMed  CAS  Google Scholar 

  • Jackson ML (1973) Soil chemical analysis, vol. 14. Prentice Hall, New Delhi

    Google Scholar 

  • Jafri SH, Charan SN, Govil PK (2003) Plagiogranite from the Andaman ophiolite belt, Bay of Bengal, India. J Geol Soc 152:681–688

    Google Scholar 

  • Jarell KF, Sprott GD (1982) Nickel transport in Methanobacterium byrantii. J Bacteriol 151:1195–1203

    Google Scholar 

  • Kruckeberg AR (1995) A semiquantitative test for nickel hyperaccumulation. Madrono 42:461

    Google Scholar 

  • Laset MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    Article  Google Scholar 

  • Lohmeyer M, Friedrich CG (1987) Nickel transport in Alcaligenes eutrophus. Arch Microbiol 149:130–135

    Article  CAS  Google Scholar 

  • Lombi E, Zaho FJ, Dunham SJ, McGrath SP (2000) Cadmium accumulations in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol 145:11–20

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL (1951) Protein measurement with the folin-phenol reagent. J. Biol. Chem. 193:265–275

    PubMed  CAS  Google Scholar 

  • Magyarosy A, Laidlaw RD, Kilaas R, Echer C, Clark DS, Keasling JD (2002) Nickel accumulation and nickel oxalate precipitation by Aspergillus niger. Appl Microbiol Biotechnol 59:382–388

    Article  PubMed  CAS  Google Scholar 

  • Mengoni A, Barzanti R, Gonnelli C, Gabbrielli R, Bazzicalupo M (2001) Characterization of nickel-resistant bacteria isolated from serpentine soil. Environ Microbiol 3:691–708

    Article  PubMed  CAS  Google Scholar 

  • Mulrooney SB, Hausinger RP (2003) Nickel uptake and utilization by microorganisms. FEMS Microbiol Rev 27:239–261

    Article  PubMed  CAS  Google Scholar 

  • Nies D, Silver S (1989) Metal ion uptake by plasmid-free metal sensitive Alcaligenes eutrophus strain. J Bacteriol 171:4073–4075

    PubMed  CAS  Google Scholar 

  • Pal A, Dutta S, Mukherjee PK, Paul AK (2005) Occurrence of metal resistance in serpentine microflora from Andaman Islands. J Basic Microbiol 45:207–218

    Article  PubMed  CAS  Google Scholar 

  • Rubikas J, Matulis D, Leipus A, Urbaitiene D (1997) Nickel resistance in Escherichia coli V38 is dependent on the concentration used for induction. FEMS Microbiol Lett 155:193–198

    Article  PubMed  CAS  Google Scholar 

  • Sar P, Kazy SK, Asthana RK, Singh SP (1998) Nickel uptake by Pseudomonas aeruginosa: Role of modifying factors. Curr Microbiol 37:306–311

    Article  PubMed  CAS  Google Scholar 

  • Schlegel HG, Cosson JP, Baker AJM (1991) Nickel hyperaccumulating plants provide a niche for nickel resistant bacteria. Bot Acta 104:18–25

    CAS  Google Scholar 

  • Singh K, Kumar A (1998) Incidence of multiple metal resistance in a Bacillus species. J. Microbiol. Biotechnol. 8:497–500

    CAS  Google Scholar 

  • Stoppel RD, Schlegel HG (1995) Nickel resistant bacteria from anthropogenically nickel polluted and naturally nickel percolated ecosystems. Appl Environ Microbiol 61:2276–2285

    PubMed  CAS  Google Scholar 

  • Stults L, Mallick S, Maier RJ (1987) Nickel uptake in Bradyrhizobium japonicum. J Bacteriol 169:1398–1402

    PubMed  CAS  Google Scholar 

  • Takakuwa S (1987) Nickel uptake in Rhodopseudomonas capsulata. Arch Microbiol 149:57–61

    Article  CAS  Google Scholar 

  • Vandamme P, Coenye T (2004) Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 54:2285–2289

    Article  PubMed  Google Scholar 

  • Vandamme P, Goris J, Coenye T, Hoste B, Janssens D, Kersters K, De Vos P, Falsen E (1999) Assignment of Centers of Disease Control group IVc-2 to the genus Ralstonia as Ralstonia paucula sp. nov. Int J Syst Bacteriol 49:663–669

    Article  PubMed  Google Scholar 

  • Watt RK, Luden PW (1999) Ni2+ transport and accumulation in Rhodospirillum rubrum. J Bacteriol 181:4554–4560

    PubMed  CAS  Google Scholar 

  • Wauters G, Avesani V, Laffineur K, Charlier J, Janssens M, Van Bosterhaut B, Delmée M (2003) Brevibacterium lutescens sp. nov., from human and environmental samples. Int J Syst Evol Microbiol 53:1321–1325

    Article  PubMed  CAS  Google Scholar 

  • Wenzel WW, Bunkowski M, Puschenreiter M, Horak O (2003) Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. Environ Poll 123:131–138

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express appreciation to Ms. Veronique Avesani, Molecular Biology Section, Microbiology Laboratory, Universite Catholique de Louvain, Brussels, Belgium for expert technical assistance in 16S rDNA amplification and sequencing. Thanks are also due to Dr. S. SenRoy, Department of Statistics, University of Calcutta, Kolkata for assistance in statistical analysis. Financial support to one of us (A. Pal) from Ministry of Environment and Forest, Government of India, New Delhi, India is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Paul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, A., Wauters, G. & Paul, A.K. Nickel tolerance and accumulation by bacteria from rhizosphere of nickel hyperaccumulators in serpentine soil ecosystem of Andaman, India. Plant Soil 293, 37–48 (2007). https://doi.org/10.1007/s11104-007-9195-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-007-9195-7

Keywords

Navigation