Skip to main content
Log in

Associations between arbuscular mycorrhizal fungi and Rhynchrelyrum repens in abandoned quarries in southern China

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The association between arbuscular mycorrhizal fungi (AMF) and Rhynchrelyrum repens was investigated. In six abandoned quarries in the Pearl River Delta area, R. repens was found to be associated with nine AMF species, including Glomus versiforme, G. brohultii, G. microaggregatum, G. clarum and G. claroideum, Acaulospora delicata, A. mellea, A. mollowae and Entrophospora infrequens. The genus Glomus and the species G. brohultii were recorded at the highest frequencies. Three typical arbuscular mycorrhizal (AM) structures, i.e. hyphae, vesicles and arbuscules, were found in the roots of the R. repens specimens collected from all the quarries investigated. Vesicles were the most frequently recorded structure. Results of a container-based experiment showed that R. repens had very high mortality (83.3%) in the absence of AMF in soil containing sufficient P (phosphorus); this indicates that R. repens is an obligate mycotroph. The presence of AMF significantly increased the biomass accumulation of R. repens seedlings (p < 0.01). It was also observed that AMF colonization was related to soil P and K (potassium) utilization by R. repens seedlings. It is, therefore, important to inoculate with AMF when using R. repens for the restoration of damaged ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

GD:

Glomus diaphanum

GG:

Glomus geosporum

GM:

Glomus mosseae

AMF:

Arbuscular mycorrhizal fungi

References

  • Aerts R (2002) The role of various types of mycorrhizal fungi in nutrient cycling and plant competition. In: Van Der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, pp 117–131

    Google Scholar 

  • Allen EB, Allen MF (1980) Natural re-establishment of vesicular-arbuscular mycorrhizae following stripmine reclamation in Wyoming. J Appl Ecol 17:139–147

    Article  Google Scholar 

  • An ZQ, Hendrix JW, Hershman DE, Henson GT (1990) Evaluation of the most probable number (MPN) and wet-sieving methods for determining soil-borne populations of endogonaceous mycorrhizal fungi. Mycologia 82:516–518

    Article  Google Scholar 

  • Azcón R, Ambrosano E, Charest C (2003) Nutrient acquisition in mycorrhizal lettuce plants under different phosphorus and nitrogen concentration. Plant Sci 165:1137–1145

    Article  CAS  Google Scholar 

  • Bao YY, Yan W, Zhang MQ (2007) Arbuscular mycorrhizal fungi associated with common plants in grassland of Inner Mongolia. Mycosystema 26:51–58 (in Chinese)

    Google Scholar 

  • Beauchamp VB, Stromberg JC, Stutz JC (2006) Arbuscular mycorrhizal fungi associated with Populus-Salix stands in a semiarid riparian ecosystem. New Phytol 170:369–380

    Article  PubMed  Google Scholar 

  • Brundrett M, Melville L, Peterson L (eds) (1994) Practical Methods in Mycorrhiza Research Mycologue Publications, Guelph

  • Brundrett M, Jasper DA, Ashwath N (1999) Glomalean mycorrhizal fungi from tropical Australia II. The effect of nutrient levels and host species on the isolation of fungi. Mycorrhiza 8:315–321

    Article  Google Scholar 

  • Coates DJ, van Leeuwen SJ (1997) Delineating seed provenance areas for revegetation from patterns of genetic variation. In Bellairs SM, Osborne JM (eds) Proceedings of the Second Australian Workshop on Biology for Revegetation. Australian Centre for Minesite Rehabilitation Research, Brisbane, pp 3–15

  • Collier SC, Yarnes CT, Herman RP (2003) Mycorrhizal dependency of Chihuahuan desert plants is influenced by life history strategy and root morphology. J Arid Environ 55:223–229

    Article  Google Scholar 

  • Cuenca G, Andrade ZD, Escalante G (1998) Arbuscular mycorrhizae in the rehabilitation of fragile degraded tropical lands. Biol Fert Soils 26:107–111

    Article  Google Scholar 

  • Cuenca G, Andrade ZD, Lovera M, Fajardo L, Meneses E (2003) Mycorrhizal response of Clusia pusilla growing in two different soils in the field. Trees 17:200–206

    Google Scholar 

  • Cullen WR, Wheater CP, Dunleavy PJ (1998) Establishment of species-rich vegetation on reclaimed limestone quarry faces in Derbyshire, UK. Biol Conserv 84:25–33

    Article  Google Scholar 

  • Douds DD, Millner P (1999) Biodiversity of arbuscular mycorrhizal fungi in agroecosystems. Agric Ecosyst Environ 74:77–93

    Article  Google Scholar 

  • Galvez L, Douds DD, Drinkwater LE, Wagoner P (2001) Effect of tillage and farming system upon VAM fungus populations and mycorrhizas and nutrient uptake of maize. Plant Soil 228:299–308

    Article  CAS  Google Scholar 

  • Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14:185–192

    Article  PubMed  Google Scholar 

  • Harwood D (1990) Aspects of species and provenance selection. In: Stafford J (ed) Sowing the seeds: direct seeding and natural regeneration conference proceedings. Greening Australia, Canberra, pp 127–133

    Google Scholar 

  • Herrera-Peraza RA, Ferrer RL, Sieverding E (2003) Glomus brohultii: a new species in the arbuscular mycorrhiza forming glomerales. J Appl Bot-Angew Bot 77:37–40

    Google Scholar 

  • Hetrick BAD, Wilson GWT, Todd TC (1990) Differential responses of C3 and C4 grasses to mycorrhizal symbiosis, P fertilization, and soil microorganisms. Can J Bot 68:461–467

    Article  Google Scholar 

  • Hetrick BAD, Wilson GWT, Hartnett DC (1992) Relationship of mycorrhizal symbiosis rooting strategy and phenology among tall grass prairie forbs. Can J Bot 67:2608–2615

    Google Scholar 

  • Janos DP (1980) Mycorrhizae influence tropical succession. Biotropica 12:56–64

    Article  Google Scholar 

  • Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91

    Article  PubMed  Google Scholar 

  • Jansa J, Mozafar A, Frossard E (2005) Phosphorus acquisition strategies within arbuscular mycorrhizal fungal community of a single field site. Plant Soil 276:163–176

    Article  CAS  Google Scholar 

  • Jentschke G, Brandes B, Kuhn AJ, Schröder WH, Becker JS, Godbold DL (2000) The mycorrhizal fungus Paxillus involutus transports magnesium to Norway spruce seedlings. Evidence from stable isotope labeling. Plant Soil 220:243–246

    Article  CAS  Google Scholar 

  • Kennedy LJ, Tiller RL, Stutz JC (2002) Associations between arbuscular mycorrhizal fungi and Sporobolus wrightii in riparian habitats in arid South-western North America. J Arid Environ 50:459–475

    Article  Google Scholar 

  • Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301

    Article  Google Scholar 

  • Koide RT (1991a) Nutrient supply, nutrient demand and plant response to mycorrhizal symbiosis. Funct Ecol 31:252–255

    Google Scholar 

  • Koide RT (1991b) Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol 117:365–386

    Article  CAS  Google Scholar 

  • Koide RT, Li MG (1990) On host regulation of the Vesicular-arbuscular mycorrhizal symbiosis. New Phytol 114:59–74

    Article  Google Scholar 

  • Koske RE, Tessier B (1983) A convenient, permanent slide mounting medium. Newsl Mycol Soc Am 4:59

    Google Scholar 

  • Kothari SK, Marschner H, George E (1990) Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize. New Phytol 116:303–311

    Article  Google Scholar 

  • Lu X (ed.) (2001) Study of soil fertilizer. Chinese Agriculture Press, Beijing, China (in Chinese, 428 pp)

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JL (1990) A new method which gives an objective measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Morte A, Lovisolo C, Schubert A (2000) Effect of drought stress on growth and water relations of the mycorrhizal association Helianthemum almeriense-Terfezia claveryi

  • Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal Fungi in Agroecosystems of Central Europe. Appl Environ Microbiol 69:2816–2824

    Article  PubMed  CAS  Google Scholar 

  • Oliveira RS, Castro PML, Dodd JC, Vosátka M (2006) Different native arbuscular mycorrhizal fungi influence the coexistence of two plant species in a highly alkaline anthropogenic sediment. Plant Soil 287:209–221

    Article  CAS  Google Scholar 

  • Page AL, Miller RH, Keeney DR (eds.) (1982) Methods of soil analysis. ASA and SSSA, Madison, Wisconsin

  • Peterson RL, Bonfante P (1994) Comparative structure of vesicular-arbuscular mycorrhizas and ectomycorrhizas. Plant Soil 159:79–88

    Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–160

    Article  Google Scholar 

  • Ratcliffe DA (1974) Ecological effects of mineral exploitation in the United Kingdom and their significance to nature conservation. Proc R Soc Lond 339:355–372

    Article  CAS  Google Scholar 

  • Reeves FB, Wagner D, Moorman T, Kiel J (1979) The role of endomycorrhizae in revegetation practices in the semi-arid west. I. a comparison of incidence of mycorrhizae in severely disturbed vs. natural environments. Am J Bot 66:6–13

    Article  Google Scholar 

  • Sagoff M (2005) Do non-native species threaten the natural environment? J Agr Environ Ethics 18:215–236

    Article  Google Scholar 

  • Schenck NC, Peréz Y (1988) Manual for the identification of VA mycorrhizal fungi, 2nd edn. Synergistic, Gainesville, Fla

    Google Scholar 

  • Simard SW, Durall D, Jones M (2002) Carbon and nutrient fluxes within and between mycorrhizal plants. In: Van Der Heijden MGA, Sanders IR (eds) Mycorrhizal Ecology. Springer, Berlin, pp 41–42

    Google Scholar 

  • Smith SE, Read DJ (1997) Section 1: Vesicular- arbuscular mycorrhizas. In Mycorrhizal symbiosis, 2nd edn. Academic, San Diego, pp 54–64

  • Smith FA, Jakobsen I, Smith SE (2000) Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytol 147:357–366

    Article  Google Scholar 

  • Tang HJ, Hu ZQ (2004) On the ecological restoration of quarry. China Mining Magazine 13:38–42 (in Chinese)

    Google Scholar 

  • Van Der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091

    Article  Google Scholar 

  • Wilson GWT, Hartnett DC (1998) Interspecific variation in plant responses to mycorrhizal colonization in tall grass prairie. Am J Bot 85:1732–1738

    Article  Google Scholar 

  • Yuan JG, Fang W, Fan L, Chen Y, Wang DQ, Yang ZY (2006) Soil formation and vegetation establishment on the cliff face of abandoned quarries in the early stages of natural colonization. Restor Ecol 14:349–356

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by Guangzhou R&D Program for Key Technologies. We thank Roger T. Koide (Department of Horticulture Penn State University, PA 16802, USA), Helen Y Lee (Oberlin College, Oberlin, OH, 44074, USA) and Yi Luo (Long Island University-Brooklyn Campus, Brooklyn, NY, 11201, USA) for checking our English grammar.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong-yi Yang or Guo-rong Xin.

Additional information

Responsible Editor: Peter Christie

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Yuan, Jg., Yang, Zy. et al. Associations between arbuscular mycorrhizal fungi and Rhynchrelyrum repens in abandoned quarries in southern China. Plant Soil 304, 257–266 (2008). https://doi.org/10.1007/s11104-008-9546-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9546-z

Keywords

Navigation