Skip to main content
Log in

Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

In this work we studied how biotic and abiotic stresses can alter the pattern of flavonoids exuded by Osumi soybean roots. A routine method was developed for the detection and characterization of the flavonoids present in soybean root exudates using HPLC-MS/MS. Then, a systematic screening of the flavonoids exuded under biotic stress, the presence of a plant growth promoting rhizobacterium, and salt stress was carried out. Results obtained indicate that the presence of Chryseobacterium balustinum Aur9 or 50 mM NaCl changes qualitatively the pattern of flavonoids exuded when compared to control conditions. Thus, in the presence of C. balustinum Aur9, soybean roots did not exude quercetin and naringenin and, under salt stress, flavonoids daidzein and naringenin could not be detected. Soybean root exudates obtained under saline conditions showed a diminished capacity to induce the expression of the nodA gene in comparison to the exudates obtained in the absence of salt. Moreover, lipochitooligosaccharides (LCOs) were not detected or weakly detected when Sinorhizobium fredii SMH12 was grown in the exudates obtained under salt stress conditions or under salt stress in the presence of C. balustinum Au9, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aoki T, Akashi T, Ayabe S (2000) Flavonoids of leguminous plants: structure, biological activity and biosynthesis. J Plant Res 113:475–488

    Article  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Ann Rev Plant Biol 57:233–266

    Article  CAS  Google Scholar 

  • Bekki A, Trinchant JC, Rigaud J (1987) Nitrogen fixation (C2H2 reduction) by Medicago nodules and bacteroids under sodium chloride stress. Physiol Plant 71:61–67

    Article  CAS  Google Scholar 

  • Buendía-Clavería AM, Moussaid A, Ollero FJ, Vinardell JM, Torres A, Moreno J, Gil-Serrano AM, Rodríguez-Carvajal MA, Tejero-Mateo P, Peart JL, Brewin NJ, Ruiz-Sainz JE (2003) A purL mutant of Sinorhizobium fredii HH103 is symbiotically defective and altered in its lipopolysaccharide. Microbiology 149:1807–1818

    Article  PubMed  CAS  Google Scholar 

  • Cho MJ, Harper JE (1991) Effect of inoculation and nitrogen on isoflavonoid concentration in wild-type and nodulation-mutant soybean roots. Plant Physiol 95:435–442

    Article  CAS  PubMed  Google Scholar 

  • Crespo-Rivas JC, Margaret I, Pérez-Montaño F, López-Baena FJ, Vinardell JM, Ollero FJ, Moreno J, Ruiz-Sainz JE, Buendía-Clavería AM (2007) A pyrF auxotrophic mutant of Sinorhizobium fredii HH103 impaired in its symbiotic interactions with soybean and other legumes. Int Microbiol 10:169–176

    CAS  PubMed  Google Scholar 

  • D’Arcy-Lameta A (1986) Study of soybean and lentil root exudates. Identification of some polyphenolic compounds, relation with plantlet physiology. Plant Soil 92:113–123

    Article  Google Scholar 

  • Dakora F, Phillips D (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • Dardanelli MS, Fernández de Córdoba FJ, Espuny MR, Rodríguez-Carvajal MA, Soría-Díaz ME, Gil-Serrano AM, Okon Y, Megías M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721

    Article  CAS  Google Scholar 

  • de Maagd RA, Wijffelman CA, Pees E, Lugtenberg JBB (1988) Detection and localization of two Sym plasmid-dependent proteins of Rhizobium leguminosarum biovar viciae. J Bacteriol 170:4424–4427

    PubMed  Google Scholar 

  • Delgado MJ, Ligero F, Lluch C (1994) Effect of salt stress on growth and nitrogen fixation by pea, faba bean, common an and soybean plants. Soil Biol Biochem 26:71–376

    Article  Google Scholar 

  • Estévez J, Dardanelli MS, Megias M, Rodríguez-Navarro DN (2009) Symbiotic performance of common bean and soybean co inoculated with rhizobia and Chryseobacterium balustinum Aur9 under moderate saline conditions. Symbiosis (in press).

  • Gutiérrez-Mañero FJ, Probanza A, Ramos B, Colón-Flores JJ, Lucas-García JA (2003) Effects of culture filtrates of rhizobacteria isolated from wild lupine on germination, growth, and biological nitrogen fixation of lupine seedlings. J Plant Nutr 26:1101–1115

    Article  CAS  Google Scholar 

  • Kape R, Parniske M, Brandt S, Werener D (1992) Isoliquiritigenin, a strong nod gene- and glyceollin resistance-inducing flavonoid from soybean root exudates. Appl Environ Microbiol 58:1705–1710

    CAS  PubMed  Google Scholar 

  • Lohar DP, Sharopova N, Endre G, Peñuela S, Samac D, Town C, Silverstein KAT, VanderBosch KA (2006) Transcript analysis of early nodulation events in Medicago truncatula. Plant Physiol 140:221–234

    Article  CAS  PubMed  Google Scholar 

  • López-Baena FJ, Vinardell JM, Pérez-Montaño F, Crespo-Rivas JC, Bellogín RA, Espuny MR, Ollero FJ (2008) Regulation and symbiotic significance of nodulation outer proteins secretion in Sinorhizobium fredii HH103. Microbiology 154:1835–1836

    Article  CAS  Google Scholar 

  • Lucas-García JA, Probanza A, Ramos B, Barriuso J, Gutiérrez-Mañero FJ (2004) Effects of inoculation with plant growth promoting rhizobacteria (PGPRs) and Sinorhizobium fredii on biological nitrogen fixation, nodulation and growth of Glycine max cv. Osumi. Plant Soil 267:143–153

    Article  Google Scholar 

  • Parmar N, Dadarwal KR (1999) Stimulation of nitrogen fixation and induction of flavonoid-like compounds by rhizobacteria. J Appl Microbiol 86:36–44

    Article  CAS  Google Scholar 

  • Pueppke SG, Bolaños-Vasquez MC, Werner D, Bec-Ferté MP, Promé JC, Krishnan HB (1998) Release of flavonoids by the soybean cultivars McCall and Peking and their perception as signals by the nitrogen-fixing symbiont Sinorhizobium fredii. Plant Physiol 117:599–608

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Solano B, Barriuso J, Pereyra MT, Domeneche J, Gutiérrez-Mañero FJ (2007) Systemic disease protection elicited by plant growth promoting rhizobacteria strains: relationship between metabolic responses, systemic disease protection, and biotic elicitors. Phytopathol 98:451–457

    Article  CAS  Google Scholar 

  • Rao JR, Cooper JE (1994) Rhizobia catabolize nod gene-inducing flavonoids via C-ring fission mechanisms. J Bacteriol 176:5409–5413

    CAS  PubMed  Google Scholar 

  • Rao JR, Cooper JE (1995) Soybean nodulating rhizobia modify nod gene inducers daidzein and genistein to yield aromatic products that can influence gene-inducing activity. Mol Plant Microbe Interact 8:855–862

    CAS  Google Scholar 

  • Rauha JP, Vuorela H, Kostiainen R (2001) Effect of eluent on the ionization efficiency of flavonoids by ion spray, atmospheric pressure chemical ionization, and atmospheric pressure photoionization mass spectrometry. J Mass Spectrom 36:1269–1280

    Article  CAS  PubMed  Google Scholar 

  • Ríos JJ, Gil MJ, Gutiérrez-Rosales F (2005) Solid-phase extraction gas chromatography-ion trap-mass spectrometry qualitative method for evaluation of phenolic compounds in virgin olive oil and structural confirmation of oleuropein and ligstroside aglycons and their oxidation products. J Chromatogr 1093:167–176

    Article  CAS  Google Scholar 

  • Rodríguez-Navarro DN, Ruiz-Sainz JE, Buendía-Clavería AM, Santamaría-Linaza C, Balatti PA, Krishnan HB, Pueppke SG (1996) Characterization of fast-growing rhizobia from nodulated soybean (Glycine max (L.) Merr.) in Vietnam. Syst Appl Microbiol 19:240–248

    Google Scholar 

  • Rodríguez-Navarro DN, Bellogín R, Camacho M, Daza A, Medina C, Ollero FJ, Santamaría C, Ruíz-Saínz JE, Vinardell JM, Temprano FJ (2002) Field assessment and genetic stability of Sinorhizobium fredii strain SMH12 for commercial soybean inoculants. Eur J Agron 19:299–309

    Article  Google Scholar 

  • Shaw LJ, Morris P, Hooker JE (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8:1867–1880

    Article  CAS  PubMed  Google Scholar 

  • Smit G, Puvanesarajahy V, Carlson RWE, Barbour WM, Stacey G (1992) Bradyrhizobium japonicum nodD1 can be specifically induced by soybean flavonoids that do not induce the nodYABCSUIJ operon. J Biol Chem 267:310–318

    CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Spaink HP, Aarts A, Stacey G, Bloemberg GV, Lugtenberg BJJ, Kennedy EP (1992) Detection and separation of Rhizobium and Bradyrhizobium Nod metabolites using thin-layer chromatography. Mol Plant Microbe Interact 5:72–80

    CAS  PubMed  Google Scholar 

  • Strack D, Wray V (1994) The anthocyanins. In: Harborne JB (ed) The flavonoids. Chapman & Hall, London, pp 1–22

    Google Scholar 

  • Tejera NA, Campos R, Sanjuán J, Lluch C (2004) Nitrogenase and antioxidant enzyme activities in Phaseolus vulgaris nodules formed by Rhizobium tropici isogenic strains with varying tolerance to salt stress. J Plant Physiol 161:329–338

    Article  CAS  PubMed  Google Scholar 

  • Tejera NA, Campos R, Sanjuán J, Lluch C (2005) Effect of inoculation with Rhizobium tropici isogenic strains on growth, nutrient accumulation and nitrogen fixation of common bean plants. J Plant Nutr 28:1907–1921

    Article  CAS  Google Scholar 

  • Tu JC (1981) Effect of salinity on Rhizobium-root hair interaction, nodulation and growth of soybean. Can J Plant Sci 61:231–239

    Article  Google Scholar 

  • Vinardell JM, López-Baena FJ, Hidalgo A, Ollero FJ, Bellogín RA, Espuny MR, Temprano F, Romero F, Krishnan HB, Pueppke SG, Ruiz-Sainz JE (2004) The effect of FITA mutations on the symbiotic properties of Sinorhizobium fredii varies in a chromosomal-background-dependent manner. Arch Microbiol 181:144–154

    Article  CAS  PubMed  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in arid climate. Microbiol Mol Biol Rev 63:968–989

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by grants AGL2005-07923-C05 and AGL2006-13758-C05/AGR of the Spanish Ministerio de Ciencia e Innovación. M. S. Dardanelli is a member of the Research Career of CONICET, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Ollero.

Additional information

Responsible Editor: Peter A.H. Bakker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dardanelli, M.S., Manyani, H., González-Barroso, S. et al. Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil 328, 483–493 (2010). https://doi.org/10.1007/s11104-009-0127-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0127-6

Keywords

Navigation