Skip to main content

Advertisement

Log in

Biochar’s role as an alternative N-fertilizer: ammonia capture

  • Commentary
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

Biochar’s role as a carbon sequestration agent, while simultaneously providing soil fertility improvements when used as an amendment, has been receiving significant attention across all sectors of society, ranging from academia, industry, government, as well as the general public. This has lead to some exaggeration and possible confusion regarding biochar’s actual effectiveness as a soil amendment. One sparsely explored area where biochar appears to have real potential for significant impact is the soil nitrogen cycle.

Scope

Taghizadeh-Toosi et al. (this issue) examined ammonia sorption on biochar as a means of providing a nitrogen-enriched soil amendment. The longevity of the trapped ammonia was particularly remarkable; it was sequestered in a stable form for at least 12 days under laboratory air flow. Furthermore, the authors observed increased 15N uptake by plants grown in soil amended with the 15N-enriched biochar, indicating that the 15N was not irreversibly bound, but, was plant-available.

Conclusions

Their observations add credence to utilizing biochar as a carrier for nitrogen fertilization, while potentially reducing the undesired environmental consequences through gas emissions, overland flow, and leaching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amutio M, Lopez G, Artetxe M, Elordi G, Olazar M, Bilbao J (2011) Influence of temperature on biomass pyrolysis in a conical spouted bed reactor. Resour Conserv Recycl In Press, doi:10.1016/j.resconrec.2011.04.002

  • Ania ACO, Cabal CB, Parra PJB, Pis PJJ (2007) Importance of the hydrophobic character of activated carbons on the removal of naphthalene from the aqueous phase. Adsorp Sci Technol 25(3):155–167

    Article  CAS  Google Scholar 

  • Ascough PL, Bird MI, Francis SM, Thornton B, Midwood AJ, Scott AC, Apperley D (2011) Variability in oxidative degradation of charcoal: influence of production conditions and environmental exposure. Geochim Cosmochim Acta 75(9):2361–2378. doi:10.1016/j.gca.2011.02.002

    Article  CAS  Google Scholar 

  • Atkinson C, Fitzgerald J, Hipps N (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337(1):1–18. doi:10.1007/s11104-010-0464-5

    Article  CAS  Google Scholar 

  • Azargohar R, Dalai AK (2011) The direct oxidation of hydrogen sulphide over activated carbons prepared from lignite coal and biochar. Can J Chem Eng: In press. doi:ep.10378/cjce.20430

  • Bailey VL, Fansler SJ, Smith JL, Bolton H Jr (2011) Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biol Biochem 43(2):296–301. doi:10.1016/j.soilbio.2010.10.014

    Article  CAS  Google Scholar 

  • Bandosz TJ (2006) Activated carbon surfaces in environmental remediation. Elsevier, Oxford

    Google Scholar 

  • Bandosz TJ, Petit C (2009) On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds. J Colloid Interface Sci 338(2):329–345. doi:10.1016/j.jcis.2009.06.039

    Article  PubMed  CAS  Google Scholar 

  • Biniak S, Szymanski G, Siedlewski J, Swiatkowski A (1997) The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 35(12):1799–1810. doi:10.1016/s0008-6223(97)00096-1

    Article  CAS  Google Scholar 

  • Boehm HP (1966) Chemical identification of surface groups. In: Eley DD, Pines H, Weisz PB (eds) Advances in catalysis, vol 16. Academic Press, pp 179–274

  • Boehm HP (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32(5):759–769. doi:10.1016/0008-6223(94)90031-0

    Article  CAS  Google Scholar 

  • Boehm HP, Diehl E, Heck W, Sappok R (1964) Surface oxides of carbon. Angew Chem 3(10):669–677. doi:10.1002/anie.196406691, International Edition in English

    Article  Google Scholar 

  • Boehm HP, Setton R, Stumpp E (1994) Nomenclature and terminology of graphite intercalation compounds. Pure Appl Chem 66(9):1893–1901

    Article  CAS  Google Scholar 

  • Brewer CE, Schmidt-Rohr K, Satrio JA, Brown RC (2009) Characterization of biochar from fast pyrolysis and gasification systems. Environ Progr Sust Energy 28(3):386–396. doi:10.1002/ep.10378

    Article  CAS  Google Scholar 

  • Cabrera-Mesa A, Spokas K (2011) Impacts of biochar (Black Carbon) additions on the sorption and efficacy of herbicides. In: Kortekamp A (ed) Herbicides and environment. InTech, pp 315–340

  • Chen B, Chen Z (2009) Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere 76(1):127–133. doi:10.1016/j.chemosphere.2009.02.004

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Chen S, Quan X, Zhao HM, Zhang YB (2008) Sorption of polar and nonpolar organic contaminants by oil-contaminated soil. Chemosphere 73(11):1832–1837. doi:10.1016/j.chemosphere.2008.08.005

    Article  PubMed  CAS  Google Scholar 

  • Cheng C, Lehmann J, Thies J, Burton S, Engelhard M (2006) Oxidation of black carbon by biotic and abiotic processes. Org Geochem 37(11):1477–1488

    Google Scholar 

  • Cheng CH, Lehmann J, Engelhard MH (2008) Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochim Cosmochim Acta 72(6):1598–1610. doi:10.1016/j.gca.2008.01.010

    Article  CAS  Google Scholar 

  • Chun Y, Sheng GY, Chiou CT, Xing BS (2004) Compositions and sorptive properties of crop residue-derived chars. Environ Sci Technol 38(17):4649–4655. doi:10.1021/Es035034w

    Article  PubMed  CAS  Google Scholar 

  • Clough TJ, Condron LM (2010) Biochar and the nitrogen cycle: introduction. J Environ Qual 39(4):1218–1223. doi:10.2134/jeq2010.0204

    Article  PubMed  CAS  Google Scholar 

  • Clough TJ, Bertram JE, Ray JL, Condron LM, O’Callaghan M, Sherlock RR, Wells NS (2010) Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil. Soil Sci Soc Am J 74(3):852–860. doi:10.2136/sssaj2009.0185

    Article  CAS  Google Scholar 

  • Elmquist M, Cornelissen G, Kukulska Z, Gustafsson Ö (2006) Distinct oxidative stabilities of char versus soot black carbon: implications for quantification and environmental recalcitrance. Global Biogeochem Cy 20(2):GB2009. doi:10.1029/2005gb002629

    Article  Google Scholar 

  • Fletcher AJ, Uygur Y, Thomas KM (2007) Role of surface functional groups in the adsorption kinetics of water vapor on microporous activated carbons. J Phys Chem C 111(23):8349–8359. doi:10.1021/jp070815v

    Article  CAS  Google Scholar 

  • Francioso O, Sanchez-Cortes S, Bonora S, Roldán ML, Certini G (2011) Structural characterization of charcoal size-fractions from a burnt Pinus pinea forest by FT-IR, Raman and surface-enhanced Raman spectroscopies. J Mol Struct 994(1–3):155–162. doi:10.1016/j.molstruc.2011.03.011

    Article  CAS  Google Scholar 

  • Franz M, Arafat HA, Pinto NG (2000) Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon. Carbon 38(13):1807–1819. doi:10.1016/s0008-6223(00)00012-9

    Article  CAS  Google Scholar 

  • Garcia-Perez M, Wang XS, Shen J, Rhodes MJ, Tian F, Lee W-J, Wu H, Li C-Z (2008) Fast pyrolysis of oil mallee woody biomass: effect of temperature on the yield and quality of pyrolysis products. Ind Eng Chem Res 47(6):1846–1854. doi:10.1021/ie071497p

    Article  CAS  Google Scholar 

  • Gaskin JW, Steiner C, Harris K, Das KC, Bibens B (2008) Effect of low-temperature pyrolysis conditions on biochar for agriculutral use. Trans ASABE 51(6):2061–2069

    Google Scholar 

  • Goldberg ED (1985) Black carbon in the environment: properties and distribution. Wiley, New York

    Google Scholar 

  • Guo Z, Xie Y, Hong I, Kim J (2001) Catalytic oxidation of NO to NO2 on activated carbon. Energ Convers Manag 42(15–17):2005–2018. doi:10.1016/s0196-8904(01)00058-9

    Article  CAS  Google Scholar 

  • Hammes K, Schmidt MI, Smernik R, Currie L, Ball W, Nguyen T, Louchouarn P et al (2007) Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Global Biogeochem Cy 21(3):18 GB3016, doi:10.1029/2006GB002914

  • Hayati D, Ranjbar Z, Karami E (2011) Measuring agricultural sustainability. In: Lichtfouse E (ed) biodiversity, biofuels, agroforestry and conservation agriculture, vol 5. Sustainable Agriculture Reviews. Springer Netherlands, pp 73–100. doi:10.1007/978-90-481-9513-8_2

  • Hedges JI, Eglinton G, Hatcher PG, Kirchman DL, Arnosti C, Derenne S, Evershed RP, Kögel-Knabner I, de Leeuw JW, Littke R, Michaelis W, Rullkötter J (2000) The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org Geochem 31(10):945–958. doi:10.1016/s0146-6380(00)00096-6

    Article  CAS  Google Scholar 

  • Hina K, Bishop P, Arbestain MC, Calvelo-Pereira R, Macia-Agullo JA, Hindmarsh J, Hanly JA, Macias F, Hedley MJ (2010) Producing biochars with enhanced surface activity through alkaline pretreatment of feedstocks. Aust J Soil Res 48(6–7):606–617. doi:10.1071/sr10015

    Article  CAS  Google Scholar 

  • Holmes JM, Beebe RA (1957) An example of desorption hysteresis at low relative pressures on a non-porous adsorbent: ammonia on graphitized carbon black. J Phys Chem 61(12):1684–1686. doi:10.1021/j150558a040

    Article  CAS  Google Scholar 

  • Huang C-C, Li H-S, Chen C-H (2008) Effect of surface acidic oxides of activated carbon on adsorption of ammonia. J Hazard Mater 159(2–3):523–527. doi:10.1016/j.jhazmat.2008.02.051

    Article  PubMed  CAS  Google Scholar 

  • Jansen RJJ, van Bekkum H (1994) Amination and ammoxidation of activated carbons. Carbon 32(8):1507–1516. doi:10.1016/0008-6223(94)90146-5

    Article  CAS  Google Scholar 

  • Jones TP, Chaloner WG, Kuhlbusch TAG (1997) Proposed biogeological and chemical based terminology for fire-altered plant matter, vol NATOASI Series I, 51. Sedimental Records of Biomass Burning and Global Change. Springer, Berlin

    Google Scholar 

  • Kasozi GN, Zimmerman AR, Nkedi-Kizza P, Gao B (2010) Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars). Environ Sci Technol 44(16):6189–6195. doi:10.1021/es1014423

    Article  PubMed  CAS  Google Scholar 

  • Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44(4):1247–1253. doi:10.1021/es9031419

    Article  PubMed  CAS  Google Scholar 

  • Kuhlbusch TAJ, Crutzen PJ (1995) Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2. Global Biogeochem Cy 9(4):491–501. doi:10.1029/95gb02742

    Article  CAS  Google Scholar 

  • Kwapinski W, Byrne C, Kryachko E, Wolfram P, Adley C, Leahy J, Novotny E, Hayes M (2010) Biochar from biomass and waste. Waste Biomass Valor 1(2):177–189. doi:10.1007/s12649-010-9024-8

    Article  CAS  Google Scholar 

  • Laird DA (2008) The charcoal vision: a win–win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron J 100(1):178–181. doi:10.2134/agrojnl2007.0161

    Article  Google Scholar 

  • Lal R (2000) Soil management in the developing countries. Soil Sci 165(1):57–72

    Article  CAS  Google Scholar 

  • Lambin EF, Meyfroidt P (2011) Global land use change, economic globalization, and the looming land scarcity. Proc Natl Acad Sci 108(9):3465–3472. doi:10.1073/pnas.1100480108

    Article  PubMed  CAS  Google Scholar 

  • Lammirato C, Miltner A, Kaestner M (2011) Effects of wood char and activated carbon on the hydrolysis of cellobiose by [beta]-glucosidase from Aspergillus niger. Soil Biol Biochem In Press, Uncorrected Proof. doi:10.1016/j.soilbio.2011.05.021

  • Le Leuch LM, Bandosz TJ (2007) The role of water and surface acidity on the reactive adsorption of ammonia on modified activated carbons. Carbon 45(3):568–578. doi:10.1016/j.carbon.2006.10.016

    Article  Google Scholar 

  • Lefroy JH (1883) Remarks on the chemical analyses of samples of soil from Bermuda. Foreign and Commonwealth Office Collection. Royal Gazette, Hamilton

    Google Scholar 

  • Lehmann J (2007) Bio-energy in the black. Front Ecol Environ 5(7):381–387

    Article  Google Scholar 

  • Lehmann J, da Silva JP, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249(2):343–357

    Article  CAS  Google Scholar 

  • Lehmann J, Rillig M, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—A review. Soil Biol Biochem In Press, Uncorrected Proof. doi:10.1016/j.soilbio.2011.04.022

  • Leon CA, Radovic LR (1994) Chemistry and physics of carbon. Marcel Dekker, New York

    Google Scholar 

  • Major J, Rondon M, Molina D, Riha SJ, Lehmann J (2010) Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 333(1–2):117–128. doi:10.1007/s11104-010-0327-0

    Article  CAS  Google Scholar 

  • March J (1992) Advanced organic chemistry, 4th edn. Wiley, New York

    Google Scholar 

  • Mattson JA, Mark HB, Malbin MD, Weber WJ, Crittenden JC (1969) Surface chemistry of active carbon: specific adsorption of phenols. J Colloid Interface Sci 31(1):116–130. doi:10.1016/0021-9797(69)90089-7

    Article  CAS  Google Scholar 

  • Mizuta K, Matsumoto T, Hatate Y, Nishihara K, Nakanishi T (2004) Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresour Technol 95(3):255–257. doi:10.1016/j.biortech.2004.02.015

    Article  PubMed  CAS  Google Scholar 

  • Molina-Sabio M, Gonçalves M, Rodríguez-Reinoso F (2011) Oxidation of activated carbon with aqueous solution of sodium dichloroisocyanurate: effect on ammonia adsorption. Microporous Mesoporous Mater 142(2–3):577–584. doi:10.1016/j.micromeso.2010.12.045

    Article  CAS  Google Scholar 

  • Mukherjee A, Zimmerman AR, Harris W (2011) Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163(3–4):247–255. doi:10.1016/j.geoderma.2011.04.021

    Article  CAS  Google Scholar 

  • Muse JK, Mitchell CC (1995) Paper mill boiler ash and lime by-products as soil liming materials. Agron J 87(3):432–438. doi:10.2134/agronj1995.00021962008700030008x

    Article  Google Scholar 

  • Nguyen BT, Lehmann J, Kinyangi J, Smernik R, Riha SJ, Engelhard MH (2008) Long-term black carbon dynamics in cultivated soil. Biogeochem 89(3):295–308. doi:10.1007/s10533-008-9220-9

    Article  CAS  Google Scholar 

  • Nocentini C, Certini G, Knicker H, Francioso O, Rumpel C (2010) Nature and reactivity of charcoal produced and added to soil during wildfire are particle-size dependent. Org Geochem 41(7):682–689. doi:10.1016/j.orggeochem.2010.03.010

    Article  CAS  Google Scholar 

  • Novak JM, Busscher WJ (2011) Selection and use of designer biochars to improve characteristics of Southeastern USA Coastal Plain degraded soils. Advanced Biofuels and Byproducts. Springer Science, New York

    Google Scholar 

  • Novak JM, Busscher WJ, Laird DL, Ahmedna M, Watts DW, Niandou MAS (2009) Impact of biochar amendment on fertility of a Southeastern coastal plain soil. Soil Sci 174(2):105–112. doi:10.1097/SS.0b013e3181981d9a

    Article  CAS  Google Scholar 

  • Pereira MFR, Soares SF, Órfão JJM, Figueiredo JL (2003) Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon 41(4):811–821. doi:10.1016/s0008-6223(02)00406-2

    Article  CAS  Google Scholar 

  • Pesavento M, Profumo A, Alberti G, Conti F (2003) Adsorption of lead(II) and copper(II) on activated carbon by complexation with surface functional groups. Anal Chim Acta 480(1):171–180. doi:10.1016/s0003-2670(02)01597-0

    Article  CAS  Google Scholar 

  • Petit C, Bandosz TJ (2011) Synthesis, characterization, and ammonia adsorption properties of mesoporous metal–organic framework (MIL(Fe))–graphite oxide composites: exploring the limits of materials fabrication. Adv Funct Mater 21(11):2108–2117. doi:10.1002/adfm.201002517

    Article  CAS  Google Scholar 

  • Petit C, Seredych M, Bandosz TJ (2009) Revisiting the chemistry of graphite oxides and its effect on ammonia adsorption. J Mater Chem 19(48):9176–9185

    Article  CAS  Google Scholar 

  • Petit C, Kante K, Bandosz TJ (2010) The role of sulfur-containing groups in ammonia retention on activated carbons. Carbon 48(3):654–667. doi:10.1016/j.carbon.2009.10.007

    Article  CAS  Google Scholar 

  • Pitman RM (2006) Wood ash use in forestry—a review of the environmental impacts. Forestry 79(5):563–588

    Article  Google Scholar 

  • Qiu Y, Cheng H, Xu C, Sheng GD (2008) Surface characteristics of crop-residue-derived black carbon and lead(II) adsorption. Water Res 42(3):567–574. doi:10.1016/j.watres.2007.07.051

    Article  PubMed  CAS  Google Scholar 

  • Qiu Y, Zheng Z, Zhou Z, Sheng GD (2009) Effectiveness and mechanisms of dye adsorption on a straw-based biochar. Bioresour Technol 100(21):5348–5351. doi:10.1016/j.biortech.2009.05.054

    Article  PubMed  CAS  Google Scholar 

  • Rajkovich S (2010) Biochar as an Amendment to Improve Soil Fertility. Research Honors Thesis. Cornell University

  • Rodriguez-Reinoso F, Molina-Sabio M, Munecas MA (1992) Effect of microporosity and oxygen surface groups of activated carbon in the adsorption of molecules of different polarity. J Phys Chem 96(6):2707–2713. doi:10.1021/j100185a056

    Article  CAS  Google Scholar 

  • Russel MS (2009) The chemistry of fireworks, 2nd edn. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Schmidt MWI, Noack AG (2000) Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Global Biogeochem Cy 14(3):777–793

    Article  CAS  Google Scholar 

  • Seredych M, Bandosz TJ (2007) Mechanism of ammonia retention on graphite oxides: role of surface chemistry and structure. J Phys Chem C 111(43):15596–15604. doi:10.1021/jp0735785

    Article  CAS  Google Scholar 

  • Seredych M, Petit C, Tamashausky AV, Bandosz TJ (2009) Role of graphite precursor in the performance of graphite oxides as ammonia adsorbents. Carbon 47(2):445–456. doi:10.1016/j.carbon.2008.10.020

    Article  CAS  Google Scholar 

  • Seredych M, Tamashausky AV, Bandosz TJ (2010) Graphite oxides obtained from porous graphite: the role of surface chemistry and texture in ammonia retention at ambient conditions. Adv Funct Mater 20(10):1670–1679. doi:10.1002/adfm.201000061

    Article  CAS  Google Scholar 

  • Singh B, Singh BP, Cowie AL (2010) Characterisation and evaluation of biochars for their application as a soil amendment. Soil Res 48(7):516–525. doi:doi:10.1071/SR10058

    Article  CAS  Google Scholar 

  • Singoredjo L, Kapteijn F, Moulijn JA, Martín-Martínez J-M, Boehm H-P (1993) Modified activated carbons for the selective catalytic reduction of NO with NH3. Carbon 31(1):213–222. doi:10.1016/0008-6223(93)90175-a

    Article  CAS  Google Scholar 

  • Smith JL, Collins HP, Bailey VL (2010) The effect of young biochar on soil respiration. Soil Biol Biochem 42(12):2345–2347. doi:10.1016/j.soilbio.2010.09.013

    Article  CAS  Google Scholar 

  • Spokas KA (2010) Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Manag 1(2):289–303. doi:10.4155/cmt.10.32

    Article  CAS  Google Scholar 

  • Spokas K, Reicosky D (2009) Impacts of sixteen different biochars on soil greenhouse gas production. Ann Environ Sci 3:179–193

    CAS  Google Scholar 

  • Spokas KA, Baker JM, Reicosky DC (2010) Ethylene: potential key for biochar amendment impacts. Plant Soil 333(1–2):443–452. doi:10.1007/s11104-010-0359-5

    Article  CAS  Google Scholar 

  • Spokas KA, Cantrell KB, Novak JM, Archer DW, Ippolito JA, Collins HP, Boateng AA, Lima IM, Lamb MC, McAloon AJ, Lentz RD, Nichols KA (2011a) Biochar: A synthesis of its agronomic impact beyond carbon sequestration. Journal of Envioronmental Quality:Revisions submitted

  • Spokas KA, Novak JM, Stewart CE, Cantrell KB, Uchimiya M, duSaire MG, Ro KS (2011b) Qualitative analysis of volatile organic compounds on biochar. Chemosphere In press

  • Suehiro J, Zhou G, Hara M (2003) Fabrication of a carbon nanotube-based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy. J Phys D: Appl Phys 36(21):L109

    Article  CAS  Google Scholar 

  • Taghizadeh-Toosi A, Clough T, Sherlock RR, Condron LM (2011) Biochar adsorbed ammonia is bioavailable. Plant Soil:In press

  • Uchimiya M, Klasson KT, Wartelle LH, Lima IM (2011) Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations. Chemosphere In Press doi:10.1016/j.chemosphere.2010.11.050

  • Van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327(1–2):235–246. doi:10.1007/s11104-009-0050-x

    Article  Google Scholar 

  • Warnock DD, Mummey DL, McBride B, Major J, Lehmann J, Rillig MC (2010) Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: results from growth-chamber and field experiments. Appl Soil Ecol 46(3):450–456. doi:10.1016/j.apsoil.2010.09.002

    Article  Google Scholar 

  • Yanai Y, Toyota K, Okazaki M (2007) Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci Plant Nutr 53(2):181–188. doi:10.1111/j.1747-0765.2007.00123.x

    Article  CAS  Google Scholar 

  • Zamperlini G, Silva M, Vilegas W (1997) Identification of polycyclic aromatic hydrocarbons in sugar cane soot by gas chromatography-mass spectrometry. Chromatographia 46(11):655–663. doi:10.1007/bf02490527

    Article  CAS  Google Scholar 

  • Zhou Z, Shi D, Qiu Y, Sheng GD (2010) Sorptive domains of pine chars as probed by benzene and nitrobenzene. Environ Pollut 158(1):201–206. doi:10.1016/j.envpol.2009.07.020

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44(4):1295–1301. doi:10.1021/es903140c

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt A. Spokas.

Additional information

Responsible Editor: Johannes Lehmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spokas, K.A., Novak, J.M. & Venterea, R.T. Biochar’s role as an alternative N-fertilizer: ammonia capture. Plant Soil 350, 35–42 (2012). https://doi.org/10.1007/s11104-011-0930-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-0930-8

Keywords

Navigation