Skip to main content

Advertisement

Log in

Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

A field experiment was conducted to investigate the effect of biochar on maize yield and greenhouse gases (GHGs) in a calcareous loamy soil poor in organic carbon from Henan, central great plain, China.

Methods

Biochar was applied at rates of 0, 20 and 40 t ha−1 with or without N fertilization. With N fertilization, urea was applied at 300 kg N ha−1, of which 60% was applied as basal fertilizer and 40% as supplementary fertilizer during crop growth. Soil emissions of CO2, CH4 and N2O were monitored using closed chambers at 7 days intervals throughout the whole maize growing season (WMGS).

Results

Biochar amendments significantly increased maize production but decreased GHGs. Maize yield was increased by 15.8% and 7.3% without N fertilization, and by 8.8% and 12.1% with N fertilization under biochar amendment at 20 t ha−1 and 40 t ha−1, respectively. Total N2O emission was decreased by 10.7% and by 41.8% under biochar amendment at 20 t ha−1 and 40 t ha−1 compared to no biochar amendment with N fertilization. The high rate of biochar (40 t ha−1) increased the total CO2 emission by 12% without N fertilization. Overall, biochar amendments of 20 t ha−1 and 40 t ha−1 decreased the total global warming potential (GWP) of CH4 and N2O by 9.8% and by 41.5% without N fertilization, and by 23.8% and 47.6% with N fertilization, respectively. Biochar amendments also decreased soil bulk density and increased soil total N contents but had no effect on soil mineral N.

Conclusions

These results suggest that application of biochar to calcareous and infertile dry croplands poor in soil organic carbon will enhance crop productivity and reduce GHGs emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AEN :

Agronomic N use efficiency

EF:

N fertilizer-induced emission factor of N2O

GHGs:

Greenhouse gases

GWP:

Global warming potential

GHGI:

Greenhouse gas intensity

WMGS:

Whole maize growing season

SOC:

Soil organic carbon

References

  • Allen AS, Schlesinger WH (2004) Nutrient limitations to soil microbial biomass and activity in loblolly pine forests. Soil Biol Biochem 36:581–589

    Article  CAS  Google Scholar 

  • Anonymous (2010) National Assessment of Climate Change of Peoples’ Republic of China. Part III. Science Press, Beijing, pp 98–114

    Google Scholar 

  • Anonymous (2011) A perspective on maize production and market of China (2011–2015). http://www.yumi.com.cn/index/2010/YaJiuBaoGao/ in Chinese

  • Asai H, Samson KB, Stephan MH, Songyikhangsuthor K, Homma K, Kiyono Y et al (2009) Biochar amendment techniques for upland rice production in Northern Laos 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Res 111:81–84

    Article  Google Scholar 

  • Bell JM, Worrall F (2011) Charcoal addition to soils in NE England: a carbon sink with environmental co-benefits? Sci Total Environ 409:1704–1714

    Article  PubMed  CAS  Google Scholar 

  • Cavigelli MA, Robertson GP (2001) Role of denitrifier diversity in rates of nitrous oxide consumption in a terrestrial ecosystem. Soil Biol Biochem 33:297–310

    Article  CAS  Google Scholar 

  • Chan KY, Zwieten VL, Meszaros I, Dowine A, Joseph S (2007) Agronomic value of greenwaste biochar as a soil amendment. Aust J Soil Res 45:629–634

    Article  CAS  Google Scholar 

  • Chan KY, Zwieten VL, Meszaros I, Dowine A, Joseph S (2008) Using poultry litter biochars as soil amendments. Aust J Soil Res 46:437–444

    Article  Google Scholar 

  • Cheng K, Pan G, Pete S, Luo T, Li LQ, Zheng JW, Zhang XH, Han XJ, Yan M (2011) Carbon footprint of China’s crop production—An estimation using agro-statistics data over 1993–2007. Agric Ecosyst Environ. doi:10.1016/j.agee.2011.05.012

  • Cui L, Li L, Zhang A, Pan G, Bao D, Chang A (2011) Biochar amendment greatly reduces rice Cd uptake in a contaminated paddy soil: a two-year field experiment. Bioresources 6(3):2605–2618

    CAS  Google Scholar 

  • FAOSTAT (2002) Food and Agriculture Organization of the United Nations, FAOSTAT Database. http://www.fao.org/faostat/

  • Fisk MC, Fahey TJ (2001) Microbial biomass and nitrogen cycling responses to fertilization and litter removal in young northern hardwood forests. Biogeochemistry 53:201–223

    Article  CAS  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey D et al (2007) Changes in atmospheric constituents and in radiative forcing. In: Climate change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, pp 129–234

  • Fowles M (2007) Black carbon sequestration as an alternative to bioenergy. Biomass Bioenergy 31:426–432

    Article  CAS  Google Scholar 

  • Frey SD, Knorr M, Parrent JL, Simpson RT (2004) Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecol Manag 196:159–171

    Article  Google Scholar 

  • Gaskin JW, Speir RA, Harris K, Das KC, Lee RD, Morris LA (2010) Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron J 102:623–633

    Article  CAS  Google Scholar 

  • Gaunt JL, Lehmann J (2008) Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environ Sci Technol 42:4152–4158

    Article  PubMed  CAS  Google Scholar 

  • Gong Z (1999) Chinese soil taxonomy. China Science Press, Beijing, pp 109–192, in Chinese

    Google Scholar 

  • Haefele MS, Konboon Y, Wongboon W, Amarante S, Maarifat AA, Pfeiffer ME et al (2011) Effects and fate of biochar from rice residues in rice-based systems. Field Crops Res. doi:10.1016/j.fcr.2011.01014

  • Heffer P (2009) Assessment of fertilizer use by crop at the global level: 2006/07-2007/08. International Fertilizer Industry Association, Paris

    Google Scholar 

  • Hilscher A, Heister K, Siewert C, Knicker H (2009) Mineralisation and structural changes during the initial phase of microbial degradation of pyrogenic plant residues in soil. Org Geochem 40:332–342

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2006) IPCC Guidelines for National Greenhouse Gas Inventories. IPCC/IGES, Kanagawa

    Google Scholar 

  • Iqbal J, Hu R, Lin S, Hatano R, Feng M, Lu L et al (2009) CO2 emission in a subtropical red paddy soil (Ultisol) as affected by straw and N-fertilizer applications: A case study in Southern China. Agric Ecosyst Environ 131:292–302

    Article  CAS  Google Scholar 

  • Jones DL, Murphy DV, Khalid M, Ahmad W, Edwards-Jones G, DeLuca TH (2011) Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol Biochem 43:1723–1731

    Article  CAS  Google Scholar 

  • Karhu K, Mattilab T, Bergströma I, Reginac K (2011) Biochar addition to agricultural soil increased CH4 uptake and water holding capacity-Results from a short-term pilot field study. Agric Ecosyst Environ 140:309–313

    Article  CAS  Google Scholar 

  • Kimetu JM, Lehmann J (2010) Stability and stabilisation of biochar and green manure in soil with different organic carbon contents. Aust J Soil Res 48:577–585

    Article  CAS  Google Scholar 

  • Kimetu JM, Lehmann J, Ngoze OS, Mugendi ND, Kinyangi MJ, Riha S, Verchot L, Recha WJ, Pell NA (2008) Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems 11:726–739

    Article  CAS  Google Scholar 

  • Knoblauch C, Maarifat AA, Pfeiffer EM, Haefele MS (2010) Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils. Soil Biol Biochem. doi:10.1016/j.soilbio.2010.07.012

  • Lee DK, Doolittle JJ, Owens VN (2007) Soil carbon dioxide fluxes in established switchgrass land managed for biomass production. Soil Biol Biochem 39:178–186

    Article  CAS  Google Scholar 

  • Lehmann J (2007) A handful of carbon. Nature 447:143–144

    Article  PubMed  CAS  Google Scholar 

  • Lehmann J, da Silva Jr JP, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaelogical anthrosol and a ferralsol of the Central Amazon basin: fertilizer, manure, and charcoal amendments. Plant Soil 249:343–357

    Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems-a review. Mitig Adapt Strat Glob Change 11:403–427

    Article  Google Scholar 

  • Liu X, Qu J, Li L, Zhang A, Zheng J, Pan G (2011) Emission intensity of N2O from chemical N fertilizer in China's rice production can be greatly reduced under biochar amendment: a cross site field experiment. In submission

  • Lu R (2000) Methods of soil and agro-chemical analysis. China Agric Sci Tech Press, Beijing, in Chinese

    Google Scholar 

  • Major J, Lehmann J, Rondon M, Goodale C (2010a) Fate of soil-applied black carbon: downward migration leaching and soil respiration. Global Change Biol 16:1366–1379

    Article  Google Scholar 

  • Major J, Rondon M, Molina D, Riha SJ, Lehmann J (2010b) Maize yield and nutrition after 4 years of doing biochar application to a Colombian savanna oxisol. Plant Soil 333:117–128

    Article  CAS  Google Scholar 

  • Mosier AR, Halvorson AD, Reule CA, Liu XJ (2006) Net global warming potential and greenhouse gas intensity in irrigated cropping systems in Northeastern Colorado. J Environ Qual 35:1584–1598

    Article  PubMed  CAS  Google Scholar 

  • Pan G, Zhou P, Li Z, Smith P, Li L, Qiu D et al (2009) Combined inorganic/organic fertilization enhances N efficiency and increases rice productivity through organic carbon accumulation in a rice paddy from the Tai Lake region, China. Agric Ecosyst Environ 131:274–280

    Article  CAS  Google Scholar 

  • Pan G, Lin Z, Li L, Zhang A, Zheng J, Zhang X (2011) Perspective on biomass carbon industrialization of organic waste from agriculture and rural areas in China. J Agric Sci Tech 13:75–82, in Chinese

    Google Scholar 

  • Qin Y, Liu S, Guo Y, Liu Q, Zou J (2010) Methane and nitrous oxide emissions from organic and conventional rice cropping systems in Southeast China. Biol Fert Soils 46:825–834

    Article  CAS  Google Scholar 

  • Rondon MA, Ramirez JA, Lehmann J (2005) Greenhouse gas emissions decrease with charcoal additions to tropical soils. In: Proceedings of the 3rd USDA Symposium on Greenhouse Gases and Carbon Sequestration, Baltimore, USA, March 21–24, 2005, pp 208

  • Rondon MA, Molina D, Hurtado M, Ramirez J, Lehmann J, Major J, et al (2006) Enhancing the productivity of crops and grasses while reducing greenhouse gas emissions through biochar amendments to unfertile tropical soils. 18th World Congress of Soil Science, July 9–15, Philadelphia, Pennsylvania, USA. 138-168

  • Rondon MA, Lehmann J, Ramirez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with biochar additions. Biol Fertil Soils 43:699–708

    Article  Google Scholar 

  • SAS Institute (2007) SAS version 7.0, Cary, NC, USA

  • Shang Q, Yang X, Gao C, Wu P, Liu J, Xu Y et al (2011) Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiments. Global Change Biol 17:2196–2210

    Article  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, et al (2007) Agriculture. In: Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 497–540

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P et al (2008) Greenhouse gas mitigation in agriculture. Phil Trans R Soc B 363:789–813

    Article  PubMed  CAS  Google Scholar 

  • Smith LJ, Collins PH, Bailey LV (2010) The effect of young biochar on soil respiration. Soil Biol Biochem 42:2345–2347

    Article  CAS  Google Scholar 

  • Soil Survey Staff (1994) Keys to Soil Taxonomy, sixth edition. US Department of Agriculture, Soil Conservation Service, Lincoln, NE, USA, pp 161–186

  • Spokas AK, Reicosky DC (2009) Impacts of sixteen different biochars on soil greenhouse gas production. Ann Environ Sci 3:179–193

    CAS  Google Scholar 

  • Spokas AK, Baker MJ, Reicosky CD (2010) Ethylene: potential key for biochar amendment impacts. Plant Soil 333:443–452

    Article  CAS  Google Scholar 

  • Vaccari PF, Baronti S, Lugatoa E, Genesio L, Castaldi S, Fornasier F et al (2011) Biochar as a strategy to sequester carbon and increase yield in durum wheat. Eur J Agron. doi:10.1016/j.eja.2011.01.006

  • Waldrop MP, Zak DR, Sinsabaugh RL, Gallo M, Lauber C (2004) Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecol Appl 14:1172–1177

    Article  Google Scholar 

  • Wardle DA, Nilsson M, Zackrisson O (2008) Forest-derived charcoal causes loss of forest humus. Science 320:629

    Article  PubMed  CAS  Google Scholar 

  • Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil concepts and mechanisms. Plant Soil 300:9–20

    Article  CAS  Google Scholar 

  • Yamato M, Okimori Y, Wibowo IF, Anshori S, Ogawa M (2006) Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut and soil chemical properties in south Sumatra, Indonesia. Soil Sci Plant Nutr 52:489–495

    Article  CAS  Google Scholar 

  • Yanai Y, Toyota K, Okazaki M (2007) Effect of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci Plant Nutr 53:181–188

    Article  CAS  Google Scholar 

  • Zhang A, Cui L, Pan G, Li L, Hussain Q, Zhang X et al (2010) Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric Ecosyst Environ 139:469–475

    Article  CAS  Google Scholar 

  • Zimmerman RA, Gao B, Ahn MY (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem. doi:10.1016/j.soilbio.2011.02.005

  • Zou J, Huang Y, Jiang J, Zheng X, Sass LR (2005) A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: effects of water regime, crop residue, and fertilizer application. Global Biogeochem Cycl 19:GB2021. doi:10.1029/2004GB002401

    Article  Google Scholar 

  • Zwieten VL, Singh B, Joseph S, Kimber S, Cowie A, Chan YK (2009) Biochar and emissions of non-CO2 greenhouse gases from soil. In: Lehmann J, Joseph S (eds) Biochar for Environmental Management Science and Technology. Earth-scan Press, UK, pp 227–249

    Google Scholar 

  • Zwieten VL, Kimber S, Morris S, Chan YK, Downie A, Rust J et al (2010) Effect of biochar from slow pyrolysisi of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246

    Article  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the Ministry of Science and Technology of China under a grant number of 2008BAD95B13-1. Biochar was produced in Sanli New Energy Company, Henan Province, China. The authors are grateful to the anonymous reviewers for their constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genxing Pan.

Additional information

Responsible Editor: Johannes Lehmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, A., Liu, Y., Pan, G. et al. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant Soil 351, 263–275 (2012). https://doi.org/10.1007/s11104-011-0957-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-0957-x

Keywords

Navigation