Skip to main content

Advertisement

Log in

Conventional tillage versus cover crops in relation to carbon fixation in Mediterranean olive cultivation

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

For croplands, controversy persists concerning the adequacy of the soil use and the management of environmental problems such as soil erosion and fertility in a context of climate change. In this study, we used the RothC model to evaluate the capacity of carbon fixation by the soil in a Mediterranean olive grove for two different scenarios: the land-use change from native vegetation (NV) to conventional tillage (T) in the olive grove, and for the change in soil management from conventional tillage to cover crop (CC).

Methods

In three experimental olive groves in Andalusia (S Spain) two soil-management systems were sampled: T and CC. Areas of NV adjacent to the grove were also sampled as indicative of the initial state of the soil without olive trees. We measured the aboveground biomass production of the cover and the clay content, bulk density, and soil organic carbon (SOC) for 0–5, 5–15 and 15–30 cm depth.

Results

The removal of NV to implement T resulted in a significantly loss of SOC that depended mainly on the relief of the terrain. However, the use of CC increased the SOC because of greater inputs (above-and belowground plant inputs) to the soil. The final concentration at each location was related to the carbon inputs and the clay content. The CC resulted in carbon storage during the first year of 4.02 ± 1.65 Mg C ha−1, and a total carbon fixation by the soil of 5.91 ± 2.06 Mg C ha−1.

Conclusion

The use of cover crops in Mediterranean olive groves proved to be a suitable strategy to increase the carbon storage into the soil and then to decrease the CO2 concentration in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almagro M, López J, Boix-Fayos C, Albaladejo J, Martínez-Mena M (2010) Belowground carbon allocation patterns in a dry Mediterranean ecosystem: A comparison of two models. Soil Biol Biochem 42:1549–1557

    Article  CAS  Google Scholar 

  • Álvarez S, Soriano MA, Landa BB, Gómez JA (2007) Soil properties in organic olive groves compared with that in natural areas in a mountainous landscape in southern Spain. Soil Use Manag 23:404–416

    Article  Google Scholar 

  • Álvaro-Fuentes J, López MV, Arrúe JL, Moret D, Paustian K (2009) Tillage and cropping effects on soil organic carbon in Mediterranean semiarid agroecosystems: Testing the Century model. Agr Ecosyst Environ 134:211–217

    Article  Google Scholar 

  • Balesdent J, Chenu C, Balabane M (2000) Relationship of soil organic matter dynamics to physical protection and tillage. Soil Till Res 53:215–230

    Article  Google Scholar 

  • Beaufoy G (2001) EU policies for olive farming. Unsustainable on all counts. BirdLife International – WWF

  • Bhogal A, Nicholson FA, Chambers BJ (2009) Organic carbon additions: effects on soil bio-physical and physico-chemical properties. Eur J Soil Sci 60:276–286

    Article  CAS  Google Scholar 

  • Blake GR, Hartge KH (1986) Bulk density. In: Klute A (ed) Methods of soil analysis Part 1, Physical and mineralogical methods, 2nd edn. ASA-SSSA Monograph 9, Madison, pp 363–375

    Google Scholar 

  • Boix-Fayos C, de Vente J, Albaladejo J, Martínez-Mena M (2009) Soil carbon erosion and stock as affected by land use changes at the catchment scale in Mediterranean ecosystems. Agr Ecosyst Environ 133:75–85

    Article  Google Scholar 

  • Canadell J, Djema A, López B, Lloret F, Sabaté S, Siscart D, Gracia CA (1999) Structure and dynamics of the root system. In: Rodà F, Retana J, Gracia CA, Bellot J (eds) Ecology of Mediterranean evergreen oak forest, Part. 2, Stand structure and dynamics. Springer, Berlin, pp 47–59

    Chapter  Google Scholar 

  • Caravaca F, Lax A, Albaladejo J (1999) Organic matter, nutrient contents and cation exchange capacity in fine fractions from semiarid calcareous soils. Geoderma 93:161–176

    Article  CAS  Google Scholar 

  • Castro J, Fernández-Ondoño E, Rodríguez C, Lallena AM, Sierra M, Aguilar J (2008) Effects of different olive-grove management systems on the organic carbon and nitrogen content of the soil in Jaén (Spain). Soil Till Res 98:56–67

    Article  Google Scholar 

  • Cerri CEP, Easter M, Paustian K, Killian K, Coleman K, Bernoux M, Falloon P, Powlson DS, Batjes NH, Milne E, Cerri CC (2007) Predicted soil organic carbon stocks and changes in the Brazilian Amazon between 2000 and 2030. Agr Ecosyst Environ 122:58–72

    Article  CAS  Google Scholar 

  • Coleman K, Jenkinson DS (1996) RothC-26.3—a model for the turnover of carbon in soil. In: Powlson DS, Smith P, Smith JU (eds) Evaluation of soil organic matter models using existing, long-term datasets. Springer, Berlin, pp 237–246

    Chapter  Google Scholar 

  • Domingo F, Serrano-Ortiz P, Were A, Villagarcía L, García M, Ramírez DA, Kowalski AS, Moro JM, Rey A, Oyonarte C (2011) Carbon and water exchange in semiarid ecosystems in SE Spain. J Arid Environ 75:1271–1281

    Article  Google Scholar 

  • Falloon P, Smith P, Coleman K, Marshall S (1998) Estimating the size of inert organic matter pool from total soil organic carbon content for use the Rothamsted Carbon Model. Soil Biol Biochem 30:1207–1211

    Article  CAS  Google Scholar 

  • FAO (2006) World reference base for soil resources. A framework for international classification, correlation and communication. World Soil Resources Reports No. 103, FAO, Rome

  • Feller C, Bernoux M (2008) Historical advances in the study of global terrestrial soil organic carbon sequestration. Waste Manage 28:734–740

    Article  CAS  Google Scholar 

  • Fernández JE, Moreno F (1999) Water use by the olive tree. J Crop Prod 2:101–162

    Article  Google Scholar 

  • Francia JR, Durán VH, Martínez A (2006) Environmental impact from mountainous olive orchards under different soil-management systems (SE Spain). Sci Total Environ 358:46–60

    Article  Google Scholar 

  • Freibauer A, Rounsevell MDA, Smith P, Verhagen J (2004) Carbon sequestration in the agricultural soils of Europe. Geoderma 122:1–23

    Article  CAS  Google Scholar 

  • Gavrichkova O, Moscatelli MC, Kuzyakov Y, Grego S, Valentini R (2010) Influence of defoliation on CO2 efflux from soil and microbial activity in a Mediterranean grassland. Agr Ecosyst Environ 136:87–96

    Article  CAS  Google Scholar 

  • Gómez JA, Guzmán MG, Giráldez JV, Fereres E (2009a) The influence of cover crops and tillage on water and sediment yield, and on nutrient, and organic matter losses in an olive orchard on a sandy loam soil. Soil Till Res 106:137–144

    Article  Google Scholar 

  • Gómez JA, Sobrinho TA, Giráldez JV, Fereres E (2009b) Soil management effects on runoff, erosion and soil properties in an olive grove of Southern Spain. Soil Till Res 102:5–13

    Article  Google Scholar 

  • Gottschalk P, Bellarby J, Chenu C, Foereid B, Smith P, Wattenbach M, Zingore S, Smith J (2010) Simulation of soil organic carbon response at forest cultivation sequences using 13 C measurements. Org Geochem 41:41–54

    Article  CAS  Google Scholar 

  • Hassink J (1997) The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 191:77–87

    Article  CAS  Google Scholar 

  • Hernández AJ, Lacasta C, Pastor J (2005) Effects of different management practices on soil conservation and soil water in a rainfed olive grove. Agr Water Manage 77:232–248

    Article  Google Scholar 

  • Hernanz JL, López R, Navarrete L, Sánchez-Girón V (2002) Long-term effects of tillage systems and rotations on soil structural stability and organic carbon stratification in semiarid central Spain. Soil Till Res 66:129–141

    Article  Google Scholar 

  • Hernanz JL, Sánchez-Girón V, Navarrete L (2009) Soil carbon sequestration and stratification in a cereal/leguminous crop rotation with three tillage systems in semiarid conditions. Agr Ecosyst Environ 133:114–122

    Article  CAS  Google Scholar 

  • Ibáñez JJ, Lledó JM, Sánchez JR, Rodà F (1999) Stand structure, aboveground biomass and production. In: Rodà F, Retana J, Gracia CA, Bellot J (eds) Ecology of Mediterranean evergreen oak forest, Part. 2, Stand structure and dynamics. Springer, Berlin, pp 31–45

    Chapter  Google Scholar 

  • Ingram JSI, Fernandes ECM (2001) Managing carbon sequestration in soils: concepts and terminology. Agr Ecosyst Environ 87:111–117

    Article  Google Scholar 

  • Jenkinson DS, Rayner H (1977) The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci 123:298–305

    Article  CAS  Google Scholar 

  • Jenkinson DS, Meredith J, Kinyamario JI, Warren GP, Wong MTF, Harkness DD, Bol R, Coleman K (1999) Estimating net primary production from measurements made on soil organic matter. Ecology 80:2762–2773

    Article  Google Scholar 

  • López-Fando C, Dorado J, Pardo M (2007) Effects of zone-tillage in rotation with no-tillage on soil properties and crop yields in a semi-arid soil from central Spain. Soil Till Res 95:266–276

    Article  Google Scholar 

  • Martí-Roura M, Casals P, Romanyà J (2011) Temporal changes in soil organic C under Mediterranean shrublands and grasslands: impact of fire and drought. Plant Soil 338:289–300

    Article  Google Scholar 

  • Martínez-Mena M, López J, Almagro M, Boix-Fayos C, Albaladejo J (2008) Effect of water erosion and cultivation on the soil carbon stock in a semiarid area of South-East Spain. Soil Till Res 99:119–129

    Article  Google Scholar 

  • Nieto OM, Castro J, Fernández E, Smith P (2010) Simulation of soil organic carbon stocks in a Mediterranean olive grove under different soil-management systems using the RothC model. Soil Use Manage 26:118–125

    Article  Google Scholar 

  • Nieto OM (2011) Soil properties in olive groves under different soil management systems. Simulation of soil organic carbon stocks using the RothC model. Dissertation, University of Granada, Spain

    Google Scholar 

  • Ordóñez Fernández R, González Fernández P, Giráldez Cervera JV, Perea Torres F (2007) Soil properties and crop yields after 21 years of direct drilling trials in southern Spain. Soil Till Res 94:47–54

    Article  Google Scholar 

  • Parton WJ, Schimel DS, Ojima DS, Cole CV (1994) A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture and management. In: Bryant RB, Arnold RW (eds) Quantitative Modeling of Soil Farming Processes. SSSA Special Publication 39. ASA, CSSA, and SSA, Madison, Wisconsin, pp 147–167

    Google Scholar 

  • Pastor M (2004) Sistemas de manejo del suelo. In: Barranco D, Fernández-Escobar R, Rallo L (eds) El cultivo del olivo, 5th edn. Mundi-Prensa y Consejería de Agricultura y Pesca, Junta de Andalucía, pp 231–285

    Google Scholar 

  • Paustian K, Six J, Elliott ET, Hunt HW (2000) Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry 48:147–163

    Article  CAS  Google Scholar 

  • Ramos ME, Benítez E, García PA, Robles AB (2010) Cover crops under different managements vs. frequent tillage in almond orchards in semiarid conditions: effects on soil quality. Appl Soil Ecol 44:6–14

    Article  Google Scholar 

  • Romanyà J, Cortina J, Falloon P, Coleman K, Smith P (2000) Modelling changes in soil organic matter after planting fast-growing Pinus radiata on Mediterranean agricultural soils. Eur J Soil Sci 51:627–641

    Google Scholar 

  • Rosich D, Castelló A, Vallejo VR (1989) Estudio del ciclo de la materia orgánica en un encinar continental de la depresión central catalana. Options Méditerranéennes - Série Séminaires 3:173–177

    Google Scholar 

  • Saavedra MM, Pastor M (2002) Sistemas de cultivo en olivar. Manejo de malas hierbas y herbicidas. Ed Agrícola Española, SA Madrid, 439 p

  • Sánchez-Salazar F (1989) El olivo y su expansión en el reino de Jaén durante el siglo XVIII. Boletín del Instituto de Estudios Giennenses 138:83–98

    Google Scholar 

  • Smith JU, Smith P, Wattenbach M, Zaehle S, Hiederer R, Jones RJA, Montanarella L, Rounsevell M, Reginster I, Ewert F (2005) Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080. Glob Change Biol 11:2141–2152

    Article  Google Scholar 

  • Smith P (2008) Land use change and soil organic carbon dynamics. Nutr Cycl Agroecosys 81:169–178

    Article  Google Scholar 

  • Smith P, Smith JU, Powlson DS, McGill WB, Arah JRM, Chertov OG, Coleman K, Franko U, Frolking S, Jenkinson DS, Jensen LS, Kelly RH, Klein-Gunnewiek H, Komarov AS, Li C, Molina JAE, Mueller T, Parton WJ, Thornley JHM, Whitmore AP (1997) A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81:153–225

    Article  Google Scholar 

  • Soil Conservation Service (1972) Soil survey laboratory methods and procedures for collecting soil samples. Soil Surv Report 1. USDA, Washington DC

    Google Scholar 

  • Testi L, Orgaz F, Villalobos FJ (2008) Carbon exchange and water use efficiency of a growing, irrigated olive orchard. Environ Exp Bot 63:168–177

    Article  CAS  Google Scholar 

  • Throop HL, Archer SR, Monger HC, Waltman S (2012) When bulk density methods matter: Implications for estimating soil organic carbon pools in rocky soils. J Arid Environ 77:66–71

    Article  Google Scholar 

  • Tyurin IV (1951) Analytical procedure for a comparative study of soil humus. Trudy Pochr Inst Dokuchaeva 38:5–9

    CAS  Google Scholar 

  • Vleeshouwers LM, Verhagen A (2002) Carbon emission and sequestration by agricultural land use: a model study for Europe. Glob Change Biol 8:519–530

    Article  Google Scholar 

  • West TO, Post WM (2002) Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Sci Soc Am J 66:1930–1946

    Article  CAS  Google Scholar 

  • West TO, Six J (2006) Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity. Clim Chang 80:25–41

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by INIA project SUM2008-00003-C03 and FEDER funds. We would like to thank David Nesbitt for improving the English. We are also grateful for the comments and suggestions from three anonymous reviewers who have helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Nieto.

Additional information

Responsible Editor: Zucong Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nieto, O.M., Castro, J. & Fernández-Ondoño, E. Conventional tillage versus cover crops in relation to carbon fixation in Mediterranean olive cultivation. Plant Soil 365, 321–335 (2013). https://doi.org/10.1007/s11104-012-1395-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1395-0

Keywords

Navigation